首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶可导,f(0)=f(1)=0,且f(x)在[0,1]上的最小值为一1.证明:存在ξ∈(0,1),使得f’’(ξ)≥8.
设f(x)二阶可导,f(0)=f(1)=0,且f(x)在[0,1]上的最小值为一1.证明:存在ξ∈(0,1),使得f’’(ξ)≥8.
admin
2017-02-28
31
问题
设f(x)二阶可导,f(0)=f(1)=0,且f(x)在[0,1]上的最小值为一1.证明:存在ξ∈(0,1),使得f’’(ξ)≥8.
选项
答案
因为f(x)在[0,1]上连续,所以f(x)在[0,1]上取到最小值和最大值,又因为f(0)=f(1)=0,且f(x)在[0,1]上的最小值为一1,所以存在c∈(0,1),使得f(C)=一1,f’(C)=0,由泰勒公式得[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/vTH4777K
0
考研数学三
相关试题推荐
设二次型f(x1,x2,x3)=xTAx的秩为1,A的各行元素之和为3,则f在正交变换x=Qy下的标准形为_________.
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
设二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3.求二次型f的矩阵的所有特征值;
已知向量组(1):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4.的秩为4.
写出下列各试验的样本空间:(1)掷两枚骰子,分别观察其出现的点数;(2)观察一支股票某日的价格(收盘价);(3)一人射靶三次,观察其中靶次数;(4)一袋中装有10个同型号的零件,其中3个合格7个不合格,每次从中随意取
设周期函数f(x)在(一∞,+∞)内可导,周期为4,,则曲线y=f(x)在(5,f(5))点处的切线斜率为().
设总体X一N(μ,32),其中μ为未知参数,X1,X2,…,X16为来自总体X的样本,X为样本均值.如果对于检验Hoμ=μo,取拒绝域,在显著水平a=0.05下,k的值为_____.(附φ(1.65)=0.95,φ(1.96)=0.975)
二维随机变量(X,Y)在区域JD:{(x,y)a|
幂级数的收敛区间为__________.
设某酒厂有一批新酿的好酒,如果现在(假定t=0)就售出,总收入为R0(元).如果窑藏起来待来日按陈酒价格出售,t年末总收入为,假定银行的年利率为r,并以连续复利计算,试求窑藏多少年售出可使总收入的现值最大,并求r=0.06时的t值.
随机试题
被撤销的注册商标,丧失其商标专用权的起始日为()。
主张“教育事业应该是公共的,而不是私人的”的学者是()
建设项目可能产生环境噪声污染的,建设单位必须提出环境影响报告书,环境影响报告书中,应当有()的意见。
根据企业破产法律制度的规定,全民所有制企业由债权人申请破产的,该企业上级主管部门可以申请对企业进行整顿,并应向人民法院和债权人会议提交整顿方案。下列各项中,属于整顿方案内容的有( )。
下列文物在长江流域出土的是()。
我只不过是替他______几句,说明了事实的真相。填入横线部分最恰当的一项是()。
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
简述影响保险市场供给的因素。
对仗是汉语使用者的基本功,历来的受教育者一般都要接受对仗方面的训练。清朝时期的李渔编写了一部名为《笠翁对韵》的少年启蒙教材。通过背诵,学习者不但能掌握字词之间的对仗关系,还能学到历朝历代各种名句和典故。《笠翁对韵.四支》最后一段最后一联曰:
Women’sRightsMovement1Women’srightsareguaranteesofpolitical,social,andeconomicequalityforwomeninasociety
最新回复
(
0
)