首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设且A~B. 求可逆矩阵P,使得P-1AP=B.
设且A~B. 求可逆矩阵P,使得P-1AP=B.
admin
2018-04-15
61
问题
设
且A~B.
求可逆矩阵P,使得P
-1
AP=B.
选项
答案
由[*]得A,B的特征值为λ
1
=一1,λ
2
=1,λ
3
=2. 当λ=一1时,由(一E—A)X=0即(E+A)X=0得ξ
1
=(0,一1,1)
T
; 当λ=1时,由(E一A)X=0得ξ
2
=(0,1,1)
T
; 当λ=2时,由(2E—A)X=0得ξ
3
=(1,0,0)
T
,取[*]则 [*] 当λ=一1时,由(一E—B)X=0即(E+B)X=0得η
1
=(0,1,2)
T
; 当λ=1时,由(E—B)X=0得η
2
=(1,0,0)
T
; 当λ=2时,由(2E~B)X=0得η
3
=(0,0,1)
T
,取[*]则 [*] 由P
1
-1
AP
1
=P
2
-1
BP
2
得(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B, 取[*]则P
-1
AP=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/l0X4777K
0
考研数学三
相关试题推荐
设Y1,Y2,Y3相互独立且都服从参数为p的0—1分布,令当p为何值时,E(X1X2)最小.
设A是秩为3的4阶矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个解,若α1+α2+α3=(0,6,3,9)T,2α1-α3=(1,3,3,3)T,k为任意常数,则Ax=b的通解为()
设三元二次型f(x1,x2,x3)=xTAx的负惯性指数为q=1,且二次型的矩阵A满足A2-A=6E,则二次型xTAx在正交变换下的标准形是()
设矩阵有一个特征值是3.判断矩阵A2是否为正定矩阵,并证明你的结论.
设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积.(2)又设f(x)在区间(0,1)内可导,且f’(x)>.证
设f(x)=∫-1xt|t|dt(x≥一1),求曲线y=f(x)与x轴所围封闭图形的面积.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点(,0).(1)试求曲线L的方程;(2)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
直线y=x将椭圆x2+3y2=6y分为两块,设小块面积为A,大块面积为B,求的值.
如图1.3-1所示,设曲线方程为y=x2+,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0.证明
设且A,B,X满足(E—B—1A)TBTX=E,则X—1=________。
随机试题
在计算圆孤部分中性层长度的公式A=π(r+x0t)α/180中,x0指的是材料的()。
制备液体制剂首选的溶剂是
水平型食物嵌塞的原因是()
患者胃痛日久,痛如针刺,痛有定处,疼痛拒按,痛时持久,食后加剧,入夜尤甚,或见呕血、黑便,舌质紫黯或有瘀斑,脉涩。其首选取方为
A、3’→5’B、5’→3’C、N端→C端D、C端→N端E、C端→C端DNA的合成方向是
金融期货交易制度中的“逐日盯市制度”又被称为()。
下列有关政府信息公开制度的表述中,正确的有()。
香港人主要信奉佛教和道教。()
智力的个体差异并不体现在()上。
守法的根据和理由主要有哪几个方面?
最新回复
(
0
)