首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设且A~B. 求可逆矩阵P,使得P-1AP=B.
设且A~B. 求可逆矩阵P,使得P-1AP=B.
admin
2018-04-15
109
问题
设
且A~B.
求可逆矩阵P,使得P
-1
AP=B.
选项
答案
由[*]得A,B的特征值为λ
1
=一1,λ
2
=1,λ
3
=2. 当λ=一1时,由(一E—A)X=0即(E+A)X=0得ξ
1
=(0,一1,1)
T
; 当λ=1时,由(E一A)X=0得ξ
2
=(0,1,1)
T
; 当λ=2时,由(2E—A)X=0得ξ
3
=(1,0,0)
T
,取[*]则 [*] 当λ=一1时,由(一E—B)X=0即(E+B)X=0得η
1
=(0,1,2)
T
; 当λ=1时,由(E—B)X=0得η
2
=(1,0,0)
T
; 当λ=2时,由(2E~B)X=0得η
3
=(0,0,1)
T
,取[*]则 [*] 由P
1
-1
AP
1
=P
2
-1
BP
2
得(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B, 取[*]则P
-1
AP=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/l0X4777K
0
考研数学三
相关试题推荐
设A=,B为三阶非零矩阵,为BX=0的解向量,且AX=a3有解(Ⅰ)求常数a,b.(Ⅱ)求BX=0的通解.
设a,β为四维非零的正交向量,且A=aβT,则A的线性无关的特征向量个数为().
设f(x)在[0,1]上二阶连续可导,且f’(0)=f’(1).证明:存在ξ∈(0,1),使得f(x)dx=f(0)+f(1)+(ξ).
设A是n阶矩阵,A的第i行第j列元素aij=i.j(i,j=1,2,…,n).B是n阶矩阵,B的第i行第j列元素bij=i2(i=1,2,…,n).证明:A相似于B.(X,Y)的概率分布,
设f(u)具有连续的一阶导数,且当x>0,y>0时,z=满足.求z的表达式.证明考ξ1,ξ2,…,ξn线性无关;
设则三条直线a1x+b1y+c1=0,a2x+b2y+c1=0,a3x+b3y+c3=0(其中,i=1,2,3)交于一点的充分必要条件是()
设f(x)=∫-1xt|t|dt(x≥一1),求曲线y=f(x)与x轴所围封闭图形的面积.
曲线y=x(x一1)(2一x)与x轴所围成图形面积可表示为()
设b为常数.(Ⅰ)求曲线的斜渐近线l的方程;(Ⅱ)设L与l从x=1延伸到x→+∞之间的图形的面积A为有限值,求b及A的值.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点(,0).(1)试求曲线L的方程;(2)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
随机试题
报刊的四种理论中继自由主义理论之后出现的是
乳房深部脓肿的最常用的引流切口( )。
光镜下见子宫颈黏膜上皮全层异型增生并延伸到腺体,病理性核分裂相多见,但病变尚未突破基底膜,应诊断为
在体内使活性的母体药物再生而发挥其疗作用的是高分子物质组成的基质骨架型固体胶体粒子是
患儿,9岁,4周前上呼吸道感染,持续发热,膝关节肿胀疼痛,后背部见淡红色环形斑块,压之褪色。查体:C反应蛋白阳性,血沉增高。预防本病复发首选的药物是
《会计法》的立法宗旨有哪些?
根据《期货公司风险监管指标管理试行办法》的规定,期货公司风险监管指标达到预警标准的,中国证监会应在7个工作日内对公司进行现场检查。()
近代中国半殖民地半封建的社会性质,规定了()
下面对于友元函数描述正确的是()。
Whywedreamstillremainsoneofthegreatmysteries.Butinanswertothequestionofhowwedream,scientificresearchershav
最新回复
(
0
)