首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12. (1)求a,b的值; (2)利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12. (1)求a,b的值; (2)利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
admin
2018-07-26
52
问题
设二次型f(x
1
,x
2
,x
3
)=X
T
AX=ax
1
2
+2x
2
2
-2x
3
2
+2bx
1
x
3
(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.
(1)求a,b的值;
(2)利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
选项
答案
1 (1)二次型f的矩阵为 [*] 设A的特征值为λ
1
,λ
2
,λ
3
,则由题设,有 [*] 由此解得a=1,b=2. (2)由A的特征多项式 [*] =(λ-2)
2
(λ+3) 得A的特征值为λ
1
=λ
2
=2,λ
3
=-3. 对于λ
1
=λ
2
=2,解齐次线性方程组(2E-A)x=0,由 [*] 得基础解系 ξ
1
=(0,1,0)
T
,ξ
2
=(2,0,1)
T
. 对于λ
3
=-3,解齐次线性方程组(-3E-A)x一0,由 [*] 得基础解系 ξ
3
=(1,0,-2)
T
. ξ
1
,ξ
2
,ξ
3
已是正交向量组,将它们单位化,得 [*] 二次型f在正交变换x=py下的标准形为 f=2y
1
2
+2y
2
2
-3y
3
2
. 2 (1)f的矩阵为 [*] A的特征多项式为 [*] =(λ-2)[λ
2
-(a-2)λ-(2a+b
2
)]. 设A的特征值为λ
1
,λ
2
,λ
3
,则 λ
1
=2,λ
2
+λ
3
=a-2,λ
2
λ
3
=-(2a+b
2
), 由题设得 [*] 解之得a=1,b=2. (2)由(1)可得A的特征值为λ
1
=λ
2
=2,λ
3
=-3.以下同解1.
解析
转载请注明原文地址:https://kaotiyun.com/show/vTW4777K
0
考研数学三
相关试题推荐
设随机变量X~B,Y~E(1),且X与Y相互独立.记Z=(2X-1)Y,(Y,Z)的分布函数为F(y,z).试求:(Ⅰ)Z的概率密度fZ(z);(Ⅱ)F(2,-1)的值.
设随机变量X与Y独立,且,Y~N(0,1),则概率P{XY≤0}的值为
已知A=,其中a1,a2,…,an两两不等.证明与A可交换的矩阵只能是对角矩阵.
求与A=可交换的矩阵.
设随机变量X的分布律为求X的分布函数F(x),并利用分布函数求P{2<X≤6},P{X<4},P{1≤X<5}.
设A是n阶矩阵,Am=0,证明E-A可逆.
设A,B,C均为n阶矩阵,其中C可逆,且ABA=C-1,证明BAC=CAB.
已知A=,矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵,则X=______.
随机试题
A、OnSaturday.B、OnFridaynight.C、Aftermidnight.D、Inthedaytime.B新闻中提到,本次袭击开始于周五晚上,在夜色的掩护下,一直持续了很长时间。
“一国两制”的核心是()
女性,22岁。无诱因突发右下腹部剧烈疼痛,向腰骶及会阴部放射,伴头晕、恶心、出大汗、欲排大便感,未作任何处理来院急诊。(2014年第92题)该患者体检中不可能出现的体征是
哮证缓解期治疗要点是治哮证发作期治疗要点是治
某新建项目建设期为3年,借款额在各年年内均衡发生,第l年借款200万元,第2年借款400万元,第3年借款200万元,年利率6%,则该项目建设期按复利计算的借款利息为()万元。
根据成就动机理论,力求成功者最可能选择的成功概率是__________。
这座由668把算盘组成的大型木制“丹枫阁”藏书楼气势宏伟,格外引人注目。________的构思,精美的制作,创造了全国之最,让参观者啧啧称赞,________。填入划横线部分最恰当的一项是:
PM2.5是指大气中直径小于或等于2.5微米的颗粒物,它的直径还不到人的头发丝粗细的1/20。虽然PM2.5只是地球大气成分中含量很少的成分,但它富含大量的有毒、有害物质且在大气中的停留时间长、输送距离远,因而对人体健康和大气环境质量的影响更大。根据以上内
【《纳伊条约》】武汉大学2003年世界史真题
ToothersandthemselvestheBritishhaveareputationforbeingconservative--notinthenarrowpoliticalsense,butinthesen
最新回复
(
0
)