首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12. (1)求a,b的值; (2)利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12. (1)求a,b的值; (2)利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
admin
2018-07-26
73
问题
设二次型f(x
1
,x
2
,x
3
)=X
T
AX=ax
1
2
+2x
2
2
-2x
3
2
+2bx
1
x
3
(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.
(1)求a,b的值;
(2)利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
选项
答案
1 (1)二次型f的矩阵为 [*] 设A的特征值为λ
1
,λ
2
,λ
3
,则由题设,有 [*] 由此解得a=1,b=2. (2)由A的特征多项式 [*] =(λ-2)
2
(λ+3) 得A的特征值为λ
1
=λ
2
=2,λ
3
=-3. 对于λ
1
=λ
2
=2,解齐次线性方程组(2E-A)x=0,由 [*] 得基础解系 ξ
1
=(0,1,0)
T
,ξ
2
=(2,0,1)
T
. 对于λ
3
=-3,解齐次线性方程组(-3E-A)x一0,由 [*] 得基础解系 ξ
3
=(1,0,-2)
T
. ξ
1
,ξ
2
,ξ
3
已是正交向量组,将它们单位化,得 [*] 二次型f在正交变换x=py下的标准形为 f=2y
1
2
+2y
2
2
-3y
3
2
. 2 (1)f的矩阵为 [*] A的特征多项式为 [*] =(λ-2)[λ
2
-(a-2)λ-(2a+b
2
)]. 设A的特征值为λ
1
,λ
2
,λ
3
,则 λ
1
=2,λ
2
+λ
3
=a-2,λ
2
λ
3
=-(2a+b
2
), 由题设得 [*] 解之得a=1,b=2. (2)由(1)可得A的特征值为λ
1
=λ
2
=2,λ
3
=-3.以下同解1.
解析
转载请注明原文地址:https://kaotiyun.com/show/vTW4777K
0
考研数学三
相关试题推荐
设随机变量X~B,Y~E(1),且X与Y相互独立.记Z=(2X-1)Y,(Y,Z)的分布函数为F(y,z).试求:(Ⅰ)Z的概率密度fZ(z);(Ⅱ)F(2,-1)的值.
设随机变量X与Y独立,且,Y~N(0,1),则概率P{XY≤0}的值为
求与A=可交换的矩阵.
设随机变量X的分布律为求X的分布函数F(x),并利用分布函数求P{2<X≤6},P{X<4},P{1≤X<5}.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设A是n阶矩阵,Am=0,证明E-A可逆.
设A,B,C均为n阶矩阵,其中C可逆,且ABA=C-1,证明BAC=CAB.
随机试题
对于大多数化学反应,升高温度,反应速率增大。()
不属于方剂运用变化的项是
给予肺炎高热患者降温处理时,正确的操作是
关于手足搐搦症的隐性体征正确的是
关于存货叙述正确的是( )。
甲市公安机关的法医董某,一天在送孩子去幼儿园的途中亲眼看见了李某抢劫王某,造成王某重伤,下列说法错误的有()。
(2017年真题)在某个时期内,个体对某种刺激特别敏感,过了这个时期,同样的刺激则影响很小或没有影响。这个时期称为()。
教师的医疗同当地国家公务员享受同等的待遇;()对教师进行身体健康检查,并因地制宜安排教师进行休养。
下图为我国4幅省级行政区域图,按图完成下列问题。少数民族中人数最多的民族所在的省级行政区域是()。
假设你是一个企业的质检员,厂里准备引进一台新设备,可以更好的提高生产力,你该怎么办?
最新回复
(
0
)