首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
设矩阵A=的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
admin
2017-06-26
63
问题
设矩阵A=
的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
选项
答案
A的特征多项式为 [*] (1)若λ=2是f(λ)的二重根,则有(λ
2
-8λ+18+3a)|
λ=2
=2
2
-16+18+3a=3a+6=0,解得a=-2. 当a=-2时,A的特征值为2,2,6,矩阵2E-A=[*]的秩为1,故对应于二重特征值2的线性无关特征向量有两个,从而A可相似对角化. (2)若λ=2不是f(λ)的二重根,则λ
2
-8λ+18+3a为完全平方,从而18+3a=16,解得a=-[*]. 当a=-[*]时,A的特征值为2,4,4, 矩阵4E-A=[*]的秩为2, 故A的对应于特征值4的线性无关特征向量只有一个,故A不能相似于对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/vVH4777K
0
考研数学三
相关试题推荐
设二次型f(x1,x2,x3)=XTAX=ax12+2x22+-2x32+2bx1x3(b>0),其中二次矩阵A的特征值之和为1,特征值之积为-12.(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型f化为标准形,并写出所用的正交变换对应的正交矩阵.
已知a1=(1,4,0,2)T,a2=(2,7,1,3)Ta3=(0,1,-1,0)T,β=(3,10,6,4)T,问:(Ⅰ)a,b取何值时,β不能由a1,a2,a3线性表示?(Ⅱ)a,b取何值时,β可由a1,a2,a3线性表示?并写出此表示式.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(Ⅰ)存在η∈(1/2,1),使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
差分方程3yx+1-2yx=0的通解为_________.
设a0=1,a1=7/2,an+1=-(1+(1/n+1))an,n≥2,证明:当|x|<1时,幂级数收敛,并求其和函数S(x).
已知某产品的边际成本为5元/单位,生产该产品的固定成本为200元,边际收益是R’(q)=10-0.02q,则生产该产品多少件时可获得最大利润,这个最大利润是多少?
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:BTB是正定矩阵.
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中用正交变换化二次型xTAx标准形,并写出所用正交变换;
设有n台仪器,已知用第i台仪器测量时,测定值总体的标准差为σi(i=1,2,….n).用这些仪器独立地对某一物理量θ各观察一次,分别得到X1,X2.…,Xn设E(Xi)=θ(i=1,2,…,n),问k1,k2,…,k3应取何值,才能在使用估计θ时,无偏,并
随机试题
目前评价肢体淋巴水肿治疗前后变化(疗效)的最佳方法是()
男,45岁,吸烟史20年,慢性支气管炎史5年,近1年咳嗽咳痰,发作频繁
A.祛风湿止泻B.祛风湿止痛C.祛风胜湿清热D.祛风胜湿化痰E.祛风湿,补肝肾羌活胜湿汤和独活寄生汤共同点是
服务贸易依世贸组织的定义,指()
商业银行在对企业集团进行风险识别时,分析其关联交易中,判断是否属于集团法人客户内部的关联方应关注的情况有()。
当事人对仲裁协议的效力有异议的,一方请求仲裁委员会作出决定,另一方请求人民法院作出裁定的,由仲裁委员会裁定。( )
根据所给材料处理问题。某期刊为16开本,在版式设计上既讲究原则性又倡导灵活性。某相关专业的大三学生小王到该期刊社实习,找了一篇名为《大数据重塑能源系统,智能管理的有效利用是重点》的文章练习版式设计。该作品的正文主体文字用10.5磅宋体,通栏排。按
Menaregenerallybetterthanwomenontestsofspatialability,suchasmentallyrotatinganobjectthroughthreedimensionsor
That’swhatpeoplespendafterworkingdays.That’swhatpeopleshowbeforeenteringacinema.
Torpey’sstudyhasturnedaseemingly______topic,thepassport,intoafascinatingonebymakinganoriginalcontributiontothe
最新回复
(
0
)