首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,1]上连续,证明:∫01ef(x)dx∫01e—f(y)dy≥1.
设函数f(x)在[0,1]上连续,证明:∫01ef(x)dx∫01e—f(y)dy≥1.
admin
2021-08-02
55
问题
设函数f(x)在[0,1]上连续,证明:∫
0
1
e
f(x)
dx∫
0
1
e
—f(y)
dy≥1.
选项
答案
方法一 显然积分区域D={(x,y)|0≤x≤1,0≤y≤1). 记I=∫
0
1
e
f(x)
dx∫
0
1
e
f(y)
dy=[*]由对称性,知 [*] 方法二 由泰勒公式知,对任意的x∈R,恒有 [*](其中ζ介于0和x之间), 所以,有e
f(x)—f(y)
≥1+f(x)一f(y).从而 ∫
0
1
e
f(x)
dx∫
0
1
e
f(y)
dy≥∫
0
1
dx∫
0
1
[1+f(x)—f(y)]dy =1+∫
0
1
dx∫
0
1
f(x)dy—∫
0
1
dx∫
0
1
f(y)dy=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/vWy4777K
0
考研数学二
相关试题推荐
已知矩阵A=(aij)3×3的第1行元素分别为a11=1,a12=2,a13=-1.又知(A*)T=,其中A*为A的伴随矩阵.求矩阵A.
设α1,α2,α3,α4是3维非零向量,则下列说法正确的是
设随机变量X和Y相互独立,且都服从标准正态分布N(0,1),求Z=(X+Y)2的概率密度fZ(Z).
设函数f(x)在(一∞,+∞)存在二阶导数,且f(x)=f(一x),当x<0时有f’(x)<0,f’’(x)>0,则当x>0时,有()
二元函数f(x,y)=在点(0,0)处
设f(χ)二阶连续可导,f′(0)=0,且=-1,则().
设f(x)在[a,b]上连续,且f’’(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明:f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2).
设函数f(x)在定义域内可导,y=f(x)的图形如图所示,则导函数y=f’(x)的图形为()[img][/img]
已知η1=[一3,2,0]T,η2=[一1,0,一2]T是线性方程组的两个解向量,试求方程组的通解,并确定参数a,b,c.
设f(x),f’(x)为已知的连续函数,则方程y’+f’(x)y=f(x)f’(x)的通解是()
随机试题
男性,36岁,2天前着凉后发热,体温38.9℃,伴呼吸困难,咳嗽,咳少量黄痰,腹泻两次,自服“先锋霉素”无效。入院查体:嗜睡,口唇轻度发绀,脉搏100次/分,呼吸28次/分,双肺叩清音,双下肺可闻及湿啰音,心律整,腹(一),血WBC12.3×109/L,中
在一项有关某病50名病例和50名对照的研究中,关于某一可能的病因因素所发现的差异并无统计学显著性,由此可得出结论
病例对照研究与队列研究的主要相同点是
A.期色味质B.期量色味C.期量色质D.量色质味E.期量味质问诊应注意问月经的
下列不符合交感神经兴奋时表现的是
动员预付款的付款条件是()。
不同标价方法下买入价的含义不同。在直接标价法下,买入价指银行买入一定的外币而付给顾客的若干本币数。在间接标价法下,买入价指银行买入若干个外币而付给顾客的一定的本币数。()
上市公司下列交易或事项形成的资本公积中,可以直接用于转增股本的是( )。
说明现有虚拟局域网络的四种划分方式。在VLAN的各种划分方式中,哪种方式的智能化最高?
下列数据结构中,属于非线性结构的是
最新回复
(
0
)