首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
齐次线性方程组的系数矩阵A4×5=[β1,β2,β3,β4,β5]经过初等行变换化成阶梯形矩阵为 则 ( )
齐次线性方程组的系数矩阵A4×5=[β1,β2,β3,β4,β5]经过初等行变换化成阶梯形矩阵为 则 ( )
admin
2019-08-12
59
问题
齐次线性方程组的系数矩阵A
4×5
=[β
1
,β
2
,β
3
,β
4
,β
5
]经过初等行变换化成阶梯形矩阵为
则 ( )
选项
A、β
1
不能由β
3
,β
4
,β
5
线性表出
B、β
2
不能由β
1
,β
3
,β
5
线性表出
C、β
3
不能由β
1
,β
2
,β
5
线性表出
D、β
4
不能由β
1
,β
2
,β
3
线性表出
答案
D
解析
β
i
能否由其他向量线性表出,只需将β
i
视为非齐次方程的右端自由项(无论它原来在什么位置),有关向量留在左端,去除无关向量,看该非齐次方程是否有解即可.由阶梯形矩阵知,β
4
不能由β
1
,β
2
,β
3
线性表出.
转载请注明原文地址:https://kaotiyun.com/show/aqN4777K
0
考研数学二
相关试题推荐
证明可微的必要条件:设z=f(x,y)在点(x0,y0)处可微,则fx’(x0,y0)与fy’(x0,y0)都存在,且=fx’(x0,y0)△x+fy’(x0,y0)△y。
确定下列函数的定义域,并做出函数图形。
设4元齐次线性方程组(I)为而已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T.(1)求方程组(I)的一个基础解系;(2)当a为何值时,方程组(I)与(II)有非零公
已知问λ取何值时,(1)β可由α1,α2,α3线性表出,且表达式唯一;(2)β可由α1,α2,α3线性表出,但表达式不唯一;(3)β不能由α1,α2,α3线性表出.
设A=,α=为A的特征向量.(1)求a,b及A的所有特征值与特征向量.(2)A可否对角化?若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(xn).
设f(t)具有二阶导数,求f[f’(x)],{f[f(x)]}’.
设则
设则
设则在极坐标下,
随机试题
新生儿散发性甲状腺功能减退症最早出现的症状是
A、稽留热B、弛张热C、间歇型D、不规则热E、波动型疟疾为()。
有效组合与无差异曲线的切点所表示的组合,是投资者的最满意的有效组合。()
关于信用本质的说法,正确的是()。
彝族民间流行的曲调有()。
国家调整汽车消费税政策,旨在抑制大排量汽车的生产和消费,促进国家节能减排工作目标的实现。这体现的哲理有()。
(2010年联考.4月.39)色盲也能成为天文学家么?事实上,天文学家日常所分析的照片多数都是黑白的,我们在杂志和其他彩色印刷品上看到的五彩缤纷的天文照片,其实也是通过把多张望远镜拍摄的不同波段的黑白照片加工合成而来的。而且这些波段未必都在人类可见光的范围
邓小平指出:“如果现在再不实行改革,我们的现代化事业和社会主义事业就会被葬送”,开放是我国在历史转折关头做出的战略抉择,其深刻的国内和国际背景是
在Linux中,________________命令可将文件按修改时间顺序显示。
亲爱的彼特:我在这里的事情已经全部办好。这次麻烦你了,我万分感【168】。我定于今天下午两点乘火车返家,特来【169】行,并请代向你的妻子【170】好。 挚友杰克
最新回复
(
0
)