首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵. 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵. 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
admin
2021-02-25
91
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=-2,且α
1
=(1,-1,1)
T
是A的属于λ
1
的一个特征向量.记B=A
5
-4A
3
+E,其中E为3阶单位矩阵.
验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
选项
答案
由Aα
1
=λ
1
α
1
知 Bα
1
=(A
5
-4A
3
+E)α
1
=(λ
5
1
-4λ
3
1
+1)α
1
=-2α
1
, 故α
1
是矩阵B的属于特征值-2的特征向量. 类似,矩阵B的其他两个特征值为λ
5
i
-4λ
3
i
+1(i=2,3).所以B的全部特征值为-2,1,1. 因为A是实对称矩阵,故B也是实对称的.若设(x
1
,x
2
,x
3
)
T
为B的属于特征值1的特征向量,则必有(x
1
,x
2
,x
3
)α
1
=0,即(x
1
,x
2
,x
3
)
T
与α
1
正交.所以有 x
1
-x
2
+x
3
=0, 解此方程得其基础解系为α
2
=(1,1,0)
T
,α
3
=(-1,0,1)
T
.故矩阵B的属于特征值-2的全部特征向量为K
1
α
1
(K
1
为不等于零的任意常数);属于特征值1的全部特征向量为K
2
α
2
+K
3
α
3
(K
2
,K
3
是不全为零的任意常数).
解析
若λ是n阶矩阵A的特征值f(x)是x的m次多项式,则f(λ)是f(A)的特征值,且矩阵A的属于λ的特征向量α,也是f(A)的属于f(λ)的特征向量.这是矩阵的重要性质.所以第一问就是以具体的矩阵来验证上述结论.第二问则是常见的由矩阵B的特征值、特征向量求出B.
转载请注明原文地址:https://kaotiyun.com/show/vZ84777K
0
考研数学二
相关试题推荐
[*]
设函数y=y(x)由参数方程确定,求y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点.
(2009年试题,18)设非负数函数y=y(x)(x≥0)满足微分方程xy’’一y’+2=0,当曲线y=y(x)过原点时,其与直线x=1及y=0围成平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积.
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=-2,则行列式|-A1-2A2,2A2+3A3,-3A3+2A1|=_______.
若二阶常系数齐次线性微分方程y’’+by’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’’+ay’+by=x满足条件y(0)=2,y’(0)=0的特解为y=_________。
交换二次积分次序:
设f(u,v)一阶连续可偏导,f(tx,ty)=t3f(x,y),且f’1(1,2)=1,f’2(1,2)=4,则f(1,2)=______
设a>0,x1>0,n=1,2,…,试求
随机试题
重力式码头棱体抛填断面的平均轮廓线不得小于设计断面,顶面和坡面的表层应铺0.3~0.5m享度的(),其上再铺倒滤层。
纤溶系统的成分有
成年男性,于急性胰腺炎恢复期做超声检查,于胰腺体尾部探及11cm×8cm边界清晰、包膜完整、较薄的囊性病变,最可能的诊断是
男性,29岁。咳大量脓痰并反复咯血10年,多次住院治疗。查体:左下肺湿啰音,心率86次/分,律齐。如胸部X线检查检查见左下肺不规则透亮阴影,下列哪项可进一步确诊
腰椎滑脱、腰椎椎弓狭部骨不连、脊柱裂分别首选的摄影体位是
在保证膨润土拌合土层满足抗渗设计要求的前提下,节约成本的最佳做法有()。
质量事故的处理过程包括事故调查及事故原因分析和()。
在保本点上,()。
公安执法监督的基本特征有()。
法西斯党“进军罗马后,墨索里尼对新闻界采取了什么措施?
最新回复
(
0
)