首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若二阶常系数齐次线性微分方程y’’+by’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’’+ay’+by=x满足条件y(0)=2,y’(0)=0的特解为y=_________。
若二阶常系数齐次线性微分方程y’’+by’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’’+ay’+by=x满足条件y(0)=2,y’(0)=0的特解为y=_________。
admin
2019-08-11
102
问题
若二阶常系数齐次线性微分方程y
’’
+by
’
+by=0的通解为y=(C
1
+C
2
x)e
x
,则非齐次方程y
’’
+ay
’
+by=x满足条件y(0)=2,y
’
(0)=0的特解为y=_________。
选项
答案
x(1一e
x
)+2
解析
由常系数齐次线性微分方程y
’’
+ay
’
+by=0的通解为y=(C
1
+C
2
x)e
x
可知y
1
=e
x
,
y
2
=xe
x
为其两个线性无关的解,代入齐次方程,有
y
1
’’
+ay
1
’
+by
1
=(1+a+b)e
x
=0
1+a+b=0,
y
2
’’
+ay
2
’
+by
2
=[2+a+(1+a+b)x]e
x
=0
2+a=0,
从而a=一2,b=1,故非齐次微分方程为y
’’
+ay
’
+by=x。
设特解y
*
=Ax+B,代入非齐次微分方程,得一2A+Ax+B=x,即
所以特解为y
*
=x+2,非齐次方程的通解为y=(C
1
+C
2
x)e
x
+x+2。
把y(0)=2,y
’
(0)=0代入通解,得C
1
=0,C
2
=一1。故所求特解为
y=一xe
x
+x+2=x(1一e
x
)+2。
转载请注明原文地址:https://kaotiyun.com/show/vxN4777K
0
考研数学二
相关试题推荐
设A为n阶正交矩阵,α和β都是n维实向量,证明:(1)内积(α,β)=(Aα,Aβ).(2)长度||Aα||=||α||.
在x轴上有一线密度为常数μ,长度为l的细杆,在杆的延长线上离杆右端为a处有一质量为m的质点P,求证:质点与杆间的引力为(M为杆的质量).
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
设有微分方程y’-2y=φ(x),其中φ(x)=试求:在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
已知三阶矩阵A的行列式|A|=一3,A*为A的伴随矩阵,AT为A的转置矩阵。如果kA的逆矩阵为,则k=___________。
计算n阶行列式=_______.
(98年)设y=f(x)是区间[0,1]上任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间在区间[0,x0]上以f(x0)为高的矩形的面积等于在区间[x0,1]上以y=f(x)为曲面的曲边梯形的面积.(2)又设f(x)在(0,1)上可导,且
(03年)设则
设则(A*)-1=_____________.
随机试题
压缩机入口气体带水对压缩机冷却系统有哪些危害?
计划内的课题包括()
A.Imissyou,tooB.It’sniceC.Oh,comeonD.fortheworld
患者,男性,40岁。乏力、食欲下降1个月,查血压200/120mmHg,血红蛋白70g/L,血肌酐1250μmol/L,B超示双肾缩小。本例患者贫血的主要原因是
以下关于固定桥连接体的说法哪个是错误的
当出现进度偏差时,设备监理工程师必须采取合理的调整措施。属于调整过程的内容有( )。
2010年3月,丁公司“原材料”总分类账户的借方发生额为8800元,涉及的三张记账凭证分别是:1号付款凭证“原材料”总分类账户的借方发生额为3000元,10号付款凭证“原材料”总分类账户的借方发生额为2000元,5号转账凭证“原材料”总分类账户借方发生额为
下列表述中,符合营业税规定的有()。
某网友发布了一条关于中美物价对比的微博:中国,吃一次肯德基30元,下馆子最少100元,买条Levi’s400元,买辆车最少30000元(夏利);美国,吃一次肯德基4美元,下馆子40美元,买条Levi’s20美元,买辆车最多30000美元(宝马)。由此,该网
A、Becausemanypeoplegotoworkbybus.B、Becausegovernmentscan’taffordtosolvetheproblem.C、Becausetherearemoreandm
最新回复
(
0
)