首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组(I):α1,α2,…,αn;(Ⅱ):β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则( ).
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组(I):α1,α2,…,αn;(Ⅱ):β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则( ).
admin
2019-03-14
36
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
),B=(β
1
,β
2
,…,β
n
),AB=(γ
1
,γ
2
,…,γ
n
),记向量组(I):α
1
,α
2
,…,α
n
;(Ⅱ):β
1
,β
2
,…,β
n
;(Ⅲ):γ
1
,γ
2
,…,γ
n
,若向量组(Ⅲ)线性相关,则( ).
选项
A、(Ⅰ),(Ⅱ)都线性相关
B、(Ⅰ)线性相关
C、(Ⅱ)线性相关
D、(Ⅰ),(Ⅱ)至少有一个线性相关
答案
D
解析
若α
1
,α
2
,…,α
n
线性无关,β
1
,β
2
,…,β
n
线性无关,则r(A)=n,r(B)=n,于是r(AB)=n.因为γ
1
,γ
2
,…,γ
n
线性相关,所以r(AB)=r(γ
1
,γ
2
,…,γ
n
)<n,故α
1
,α
2
,…,α
n
与β
1
,β
2
,…,β
n
至少有一个线性相关,选(D).
转载请注明原文地址:https://kaotiyun.com/show/vsV4777K
0
考研数学二
相关试题推荐
已知α1是矩阵A属于特征值A=1的特征向量,α2与α3是矩阵A属于特征值λ=5的特征向量,那么矩阵P不能是()
计算二重积分,其中区域D由曲线r=1+cosθ(0≤θ≤π)与极轴围成。
设z=z(x,y)是由x2一6xy+10y2—2yz—z2+18=0确定的函数,求z=z(x,y)的极值点和极值。
设当a,b为何值时,存在矩阵C使得AC—CA=B,并求所有矩阵C。
已知向量组α1=(1,2,一1,1)T,α2=(2,0,t,0)T,α3=(0,一4,5,t)T线性无关,则t的取值范围为_________。
已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex。求曲线y=f(x2)∫0x一t2)dt的拐点。
设A是n阶矩阵,α是n维列向量,若则线性方程组()
设随机变量X的概率密度为f(x)=,且aX+b服从N(0,1)(a>0),则常数A=__________,a=__________,b=__________.
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,b)>0
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x-a的n阶无穷小,求证:f(x)的导函数f’(x)当→a时是x-a的a-1阶无穷小.
随机试题
其他诉讼参与人
下列各项中,应当采用划线更正法更正的是()
A、增高最早B、增高稍晚C、增高最晚D、不增高E、持续增高急性胰腺炎时,血清淀粉酶()
患者,男,反复感染、出血2个月。检查:全血细胞减少,肝脾无肿大,骨髓与淋巴结活检均见异常组织细胞及多核巨组织细胞。其诊断是
学习《面朝大海春暖花开》,教师为引导学生学会体会意境,播放了大海和油菜花组合的图片,对这一教学资源的分析,恰当的是()。
辩证否定观的内容包括()。
Thepassagefocuseson______.Byimmersingoreparticlesinwater,______.
简述清末诉讼审判制度的改革。
A、TonyBlairB、theKingC、GordonBrownD、presidentofIraqC
A、Hehasbeenshoppingaround.B、Hehasbeenlookingforajob.C、Hehasbeendininginarestaurant.D、Hehasbeendrivingthe
最新回复
(
0
)