首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
选择常数λ取的值,使得向量A(x,y)=2xy(x4+y2)λi—x2(x4+y2)λj在如下区域D为某二元函数u(x,y)的梯度:(Ⅰ)D={x,y)|y>0},并确定函数u(x,y)的表达式;(Ⅱ)D={(x,y)|x2+y2>0}.
选择常数λ取的值,使得向量A(x,y)=2xy(x4+y2)λi—x2(x4+y2)λj在如下区域D为某二元函数u(x,y)的梯度:(Ⅰ)D={x,y)|y>0},并确定函数u(x,y)的表达式;(Ⅱ)D={(x,y)|x2+y2>0}.
admin
2020-03-05
37
问题
选择常数λ取的值,使得向量A(x,y)=2xy(x
4
+y
2
)
λ
i—x
2
(x
4
+y
2
)
λ
j在如下区域D为某二元函数u(x,y)的梯度:(Ⅰ)D={x,y)|y>0},并确定函数u(x,y)的表达式;(Ⅱ)D={(x,y)|x
2
+y
2
>0}.
选项
答案
记A=P(x,y)i+Q(x,y)j,先由(P,Q)为某二元函数u的梯度(即du=Pdx+Qdy)的必要条件[*]定出参数λ. [*]=2x(x
4
+y
2
)
λ
+λ4xy
2
(x
4
+y
2
)
λ—1
,[*]=—2x(x
4
+y
2
)
λ
一λ4x
5
(x
2
+y
2
)
λ—1
[*]4x(x
4
+y
2
)
λ
+4λx(x
4
+y
2
)
λ
=0([*]x>0)→λ=一1. (Ⅰ)由于D={(x,y)|y>0}是单连通,λ=一1是存在u(x,y)使du=Pdx+Qdy的充要条件,因此仅当λ=一1时存在u(x,y)使(P,Q)为u的梯度. 现求u(x,y),使得du(x,y)=[*]. 凑微分法. [*] (Ⅱ)D={(x,y)|x
2
+y
2
>0|是非单连通区域,[*]((x,y)∈D)不足以保证Pdx+Qdy存在原函数.我们再取环绕(0,0)的闭曲线C:x
4
+y
2
=1,逆时针方向,求出 ∫
C
Pdx+Qdy=∫
C
[*](一2x一2x)dxdy=0, 其中D
0
是C围成的区域,它关于y轴对称.于是∫
L
Pdx+Qdy在D与路径无关,即Pdx+Qdy在D存在原函数.因此,仅当λ=一1时A(x,y)=(P,Q)在D为某二元函数u(x,y)的梯度.
解析
转载请注明原文地址:https://kaotiyun.com/show/vuS4777K
0
考研数学一
相关试题推荐
微分方程的通解为_______
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是_______。
设α1,α2,…,αs是n维向量组,r(α1,α2,…,αs)=r,则()不正确.
设有齐次线性方程组AX=O和BX=O,其中A,B均为m×n矩阵,现有4个命题:(1)若AX=O的解都是BX=O的解,则r(A)≥r(B);(2)若r(A)≥r(B),则AX=O的解都是BX=O的解;(3)若AX=O与BX=O同
设A是m×n阶矩阵,B是n×m阶矩阵,则().
已知P-1AP=,α1是矩阵A属于特征值λ=1的特征向量,α2与α3是矩阵A属于特征值λ=5的特征向量,那么矩阵P不能是()
设函数f(x)在闭区间[a,b]上有定义,在开区间(a,b)内可导,则()
级数的和为_________。
设是取自总体X中的简单随机样本X1,X2,…,Xn的样本均值,则是μ的矩估计,如果()
设曲线L:x2+y2+x+y=0,取逆时针方向,证明:I=∫L-ysinx2dx+xcosy2dy<
随机试题
金属,尤其是_______,也能促进油脂的热氧化聚合反应。
按照原理,化工生产过程由三种基本传递过程和反应过程组成。 ()
肠腺癌的生长方式为
甲国在内战期间,其国防部为了军事用途,征用了投保人美国乙公司在甲国投资设立的一家公司的所有汽车。乙公司向美国海外私人投资公司索赔。请问下面说法中正确的有哪几项?()
以下各项中,属于金融资产的有()。
某居民企业2016年度取得主营业务收入48000万元、其他业务收入2000万元,营业外收入1000万元,投资收益500万元,发生主营业务成本25000万元、其他业务成本1000万元、营业外支出1500万元、税金及附加4000万元,管理费用3000万元,销售
下列名言与作者的对应关系不正确的一项是()。
学习迁移(2019年西北师大)
1949年3月召开的中共七届二中全会,规定了党在全国胜利后在政治、经济、外交方面应当采取的基本政策,还()
数据库系统的三级模式不包括
最新回复
(
0
)