首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(11)设A=(α1,α2,α3,α4)是4阶矩阵.A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为
(11)设A=(α1,α2,α3,α4)是4阶矩阵.A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为
admin
2018-08-01
70
问题
(11)设A=(α
1
,α
2
,α
3
,α
4
)是4阶矩阵.A
*
为A的伴随矩阵.若(1,0,1,0)
T
是方程组Ax=0的一个基础解系,则A
*
x=0的基础解系可为
选项
A、α
1
,α
3
.
B、α
1
,α
2
.
C、α
1
,α
2
,α
3
.
D、α
2
,α
3
,α
4
.
答案
D
解析
首先,4元齐次线性方程组A
*
x=0的基础解系所含解向量的个数为4-r(A
*
),其中r(A
*
)为A
*
的秩,因此求r(A
*
)是一个关键.其次,由Ax=0的基础解系只含1个向量,即4-r(A)=1,得r(A)=3,于是由r(A
*
)与r(A)的关系,知r(A
*
)=1,因此,方程组A
*
x=0的基础解系所含解向量的个数为4-r(A
*
)=3,故选项(A)、(B)不对.再次.由(1,0,1,0)
T
是方程组Ax=0或x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0的解,知α
1
+α
3
=0,故α
1
与α
3
线性相关,于是只有选项(D)正确.
转载请注明原文地址:https://kaotiyun.com/show/w2j4777K
0
考研数学二
相关试题推荐
设非齐次线性方程组有三个线性无关解α1,α2,α3,(Ⅰ)证明系数矩阵的秩r(A)=2;(Ⅱ)求常数a,b及通解.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
,求极大线性无关组,并把其余向量用极大线性无关组线性表出.
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=O,则().
设f(x)连续,证明:∫0x[∫0tf(u)du]dt=∫0xf(t)(x-t)dt.
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,则=_______
用变量代换x=lnt将方程化为y关于t的方程,并求原方程的通解.
[*]则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(Ⅰ)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,Aβ1=Aβ2=…=Aβn=0[*]A(β1,β2,…,βn)=[*]BAT=O[*]α1T,α2T,…,αnT为BY=0的一组解,
就a,b的不同取值,讨论方程组解的情况.
随机试题
临床常用的腧穴定位方法是
斜面裂形成的原因是
下列各项,不属导致崩漏常见病因的是
关于当事人适格的表述,下列哪一选项是错误的?(2008—卷三—44,单)
在通过合作项目批量获取个人贷款客户的情况下,商业银行应重点审查()。
纳税人自产货物用于下列用途时,不需缴纳增值税的有()。
F
Astudentwhoentersauniversityinthesecondhalfof20thcenturyisinanewsituation.Heisnotliketheyoungmanofthe
Thepairofwords"lend"and"borrow"are
Theconceptofstudentexchangebetweencountriesisnotanewone.Itisacommon【B1】______inmanyEuropeancountriesandtheU
最新回复
(
0
)