首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(11)设A=(α1,α2,α3,α4)是4阶矩阵.A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为
(11)设A=(α1,α2,α3,α4)是4阶矩阵.A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为
admin
2018-08-01
105
问题
(11)设A=(α
1
,α
2
,α
3
,α
4
)是4阶矩阵.A
*
为A的伴随矩阵.若(1,0,1,0)
T
是方程组Ax=0的一个基础解系,则A
*
x=0的基础解系可为
选项
A、α
1
,α
3
.
B、α
1
,α
2
.
C、α
1
,α
2
,α
3
.
D、α
2
,α
3
,α
4
.
答案
D
解析
首先,4元齐次线性方程组A
*
x=0的基础解系所含解向量的个数为4-r(A
*
),其中r(A
*
)为A
*
的秩,因此求r(A
*
)是一个关键.其次,由Ax=0的基础解系只含1个向量,即4-r(A)=1,得r(A)=3,于是由r(A
*
)与r(A)的关系,知r(A
*
)=1,因此,方程组A
*
x=0的基础解系所含解向量的个数为4-r(A
*
)=3,故选项(A)、(B)不对.再次.由(1,0,1,0)
T
是方程组Ax=0或x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0的解,知α
1
+α
3
=0,故α
1
与α
3
线性相关,于是只有选项(D)正确.
转载请注明原文地址:https://kaotiyun.com/show/w2j4777K
0
考研数学二
相关试题推荐
设x与y均大于0且x≠y,证明
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设f(x)为二阶可导的偶函数,f(0)=1,f"(0)=2且f"(x)在x=0的邻域内连续,则=_______
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r
求方程组的通解.
随机试题
Ifthiskindoffishbecomes_______,futuregenerationsmaynevertasteitatall.
患者,男性,80岁。有慢性支气管炎病史20年。一周前受凉后再次出现咳嗽、咳痰,痰白质黏,伴呼吸困难、胸闷、乏力。以“慢性支气管炎合并慢性阻塞性肺气肿”入院治疗。患者最主要的护理问题是
用于配制培养液的三蒸水或超纯水宜现用现配,其存放时间最长不宜超过
A.既治瘿瘤,又治疮疡肿痛B.既治瘿瘤,又治水肿C.既治瘿瘤,又治肺热咳嗽D.既治瘿瘤,又治肝火目赤肿痛E.既治瘿瘤,又治肺痈昆布治疗的病证是
按CIFLandedLondon成交的货物,在伦敦的卸货费和进口报关费应由卖方负担。()
封闭式基金份额上市交易,基金期限合同为()年以上。
某税务师事务所在2013年省注税协会组织的行业检查中,被查出以下问题,请分别指出下列行为应承担的法律责任? (1)注册税务师王某以个人名义承接代办税务登记业务。 (2)注册税务师李某同意帮助委托方偷逃税歙,双方约定四六分成。 (3)注册税务师孙
Theyspentalltheirsparetime,______theirsparemoney,ontheirexperiment.
PASSAGETWO
Directions:Forthispart,youareallowed30minutestowriteanessaycommentingonmoreandmorepeople’smovingtoanotherc
最新回复
(
0
)