首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,证明:存在ξ∈(a,b),使得f(ξ)∫ξbg(x)dx=g(ξ)∫aξf(x)dx.
设f(x),g(x)在[a,b]上连续,证明:存在ξ∈(a,b),使得f(ξ)∫ξbg(x)dx=g(ξ)∫aξf(x)dx.
admin
2019-08-23
22
问题
设f(x),g(x)在[a,b]上连续,证明:存在ξ∈(a,b),使得f(ξ)∫
ξ
b
g(x)dx=g(ξ)∫
a
ξ
f(x)dx.
选项
答案
令φ(x)=∫
a
x
f(t)dt∫
b
x
g(t)dt,显然φ(x)在[a,b]上可导,又φ(a)=φ(b)=0,由罗尔定理,存在ξ∈(a,b),使得φ’(ξ)=0,而φ’(x)=f(x)∫
b
x
g(t)dt+g(x)∫
a
x
f(t)dt,所以f(ξ)∫
b
ξ
g(x)dx+g(ξ)∫
a
ξ
f(x)dx=0,即f(ξ)∫
ξ
b
g(x)dx=g(ξ)∫
a
ξ
f(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/w4c4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,证明存在ξ,η∈(a,b),使得eη—ξ[f(η)+f′(η)]=1。
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求。
设z=z(x,y)由方程z+ez=xy2所确定,则dz=________。
设,则f(x,y)在点(0,0)处()
在xOy平面上,平面曲线方程y=,则平面曲线与x轴的交点坐标是________。
设f(x)是连续函数。利用定义证明函数F(x)=∫0xf(t)dt可导,f′(x)=f(x)。
(Ⅰ)比较∫01|lnt|[In(1+t)n]dt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限。
求幂级数的收敛区间,并讨论该区间端点处的收敛性。
点(2,1,0)到平面3x+4y+5z=0的距离d=_______。
设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面Σ,Σ与平面z=0,z=2所围成的立体为Ω。求曲面Σ的方程。
随机试题
Itisallverywelltoblametrafficjams,thecostofpetrolandthequickpaceofmodemlife,butmannersontheroadsarebec
下列关于对建设工程投标的管理,说法正确的是()。
混凝土保护层厚度与下列因素无关的是()
接触器适用于控制操作频繁的回路,主要控制对象为( )。
期货投资者保障基金的筹集、管理和使用的具体办法,由()制定。
2008年9月12日人民法院受理了甲公司的破产案件,在受理前乙公司欠甲公司货款150万元尚未归还,人民法院受理甲公司的破产申请后,乙公司受让丙对甲公司的债权300万元。根据企业破产法规定,甲、乙两公司互欠的150万元债权债务可以相互抵销。(
天空出现朝霞,就会下雨;天空出现晚霞,就会放晴。人们由此得出“朝霞不出门,晚霞行千里”的结论。这主要体现思维的()。
材料:组织推选就业标兵活动,一共有三个候选人,第一个是大学毕业生致富解决再就业标兵。其有自主知识产权,且创业成功。第二个是进城务工的农民,在城里学会技术后,回乡带动同乡百姓共同致富,是农民企业家。第三是进城务工的农民工,开了连锁店连锁经营,是致富解决再就业
若函数φ(x)及ψ(x)是n阶可微的,且φ(k)(x0)=ψ(k)(x0),k=0,1,2,…,n一1.又x>x0时,φ(n)(z)>ψ(n)(x).试证:当x>x0时,φ(x)>ψ(x).
•Readthetexttakenfromabusinessmagazine.•Choosethebestsentencetofilleachofthegaps.•Foreachgap(9-14),m
最新回复
(
0
)