首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)的联合概率密度为 f(χ,y)=,-∞<χ,y<+∞, 记Z=X2+Y2.求: (Ⅰ)Z的密度函数; (Ⅱ)EZ,DZ; (Ⅲ)P{Z≤1}.
设二维随机变量(X,Y)的联合概率密度为 f(χ,y)=,-∞<χ,y<+∞, 记Z=X2+Y2.求: (Ⅰ)Z的密度函数; (Ⅱ)EZ,DZ; (Ⅲ)P{Z≤1}.
admin
2018-11-23
51
问题
设二维随机变量(X,Y)的联合概率密度为
f(χ,y)=
,-∞<χ,y<+∞,
记Z=X
2
+Y
2
.求:
(Ⅰ)Z的密度函数;
(Ⅱ)EZ,DZ;
(Ⅲ)P{Z≤1}.
选项
答案
(Ⅰ)当z≤0时,F(z)=0;当z>0时, F(z)=P{Z≤z}=P{X
2
+Y
2
≤z} =[*] 于是f
Z
(z)=F′(z)=[*] 由此可以看出,Z服从参数为[*]的指数分布. (Ⅱ)由f(χ,y)=[*]可知,X与Y相互独立,且X
2
与Y
2
也独立,又X~N(0,σ
2
),Y~N(0,σ
2
),故 EZ=E(X
2
+Y
2
)=EX
2
+EY
2
=2DX=2σ
2
, DZ=D(X
2
+Y
2
)=DX
2
+DY
2
=2DX
2
, [*] DX
2
=EX
4
-(EX
2
)
2
=3σ
4
-σ
4
=2σ
4
, 故DZ=4σ
4
. (Ⅲ)P{Z≤1}=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/w6M4777K
0
考研数学一
相关试题推荐
函数f(x)=xsinx()
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得=1.
求齐次线性方程组,的基础解系.
由指数分布的密度函数导出指数分布的分布函数以及数学期望和方差.
设某种零件的长度L~N(18,4),从一大批这种零件中随机取出10件,求这10件中长度在16~22之间的零件数X的概率分布、数学期望和方差.
设已知A有3个线性无关的特征向量,λ=2是A的2重特征值,试求可逆矩阵P,使P-1AP为对角形矩阵.
(06年)已知非齐次线性方程组有3个线性无关的解.(I)证明方程组系数矩阵A的秩r(A)=2;(Ⅱ)求a,b的值及方程组的通解.
(88年)设随机变量X服从均值为10,均方差为0.02的正态分布.已知φ(x)=φ(2.5)=0.9938,则X落在区间(9.95,10.05)内的概率为______.
(88年)设4×4矩阵A=(αγ2γ3γ4),B=(βγ2γ3γ4),其中α,β,γ2,γ3,γ4均为4维列向量,且已知行列式|A|=4,|B|=1,则行列式|A+B|=______.
设从均值为μ,方差为σ2>0的总体中分别抽取容量为n1,n2的两个独立样本,样本均值分别为.证明:对于任何满足条件a+b=1的常数是μ的无偏估计量,并确定常数a,b,使得方差DT达到最小.
随机试题
根据《治安管理处罚法》的规定,出租汽车司机王某在公安机关查处特定违法犯罪活动时,为违法犯罪行为人通风报信的,构成违反治安管理行为。下列属于公安机关查处的特定违法犯罪活动的是()。
TheUnfairStigmaSurroundingMillennialsandTheirMoneyA)Millennialsoftengetabadrap(不公正的对待)whenitcomestoresp
()是投资基金中最主要的一种类别。
结肠癌最早出现的症状是
实行工程预付款的,双方应当在项目专用条款内约定发包人向承包人预付工程款的时问和数额,开工后按()扣回。
从装满1000克酒精、浓度为52%的酒瓶中倒出200克酒精,再倒人蒸馏水将瓶加满,这样反复3次后,酒瓶中的酒精浓度是多少?()
列宁给社会主义下的定义是“苏维埃政权加全国电气化”。对这一定义理解正确的是()。
某项目成本偏差(CV)大于0,进度偏差(SV)小于0,则该项目的状态是(163)。
Afterthewar,anewschoolbuildingwasputup______therehadoncebeenatheatre.
Airlinecompaniestodayrequirethatallluggage______morestrictly.
最新回复
(
0
)