首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维离散型随机变量(X,Y)的概率分布为: (Ⅰ)求P(x=2y); (Ⅱ)求Cov(X—Y,Y)。
设二维离散型随机变量(X,Y)的概率分布为: (Ⅰ)求P(x=2y); (Ⅱ)求Cov(X—Y,Y)。
admin
2018-01-12
104
问题
设二维离散型随机变量(X,Y)的概率分布为:
(Ⅰ)求P(x=2y);
(Ⅱ)求Cov(X—Y,Y)。
选项
答案
[*] (Ⅰ)P(X=2Y)=p(X=0,Y=0)+P(X=2,Y=1)=[*] (Ⅱ)Cov(X一Y,Y)=Cov(X,Y)一Cov(Y,Y),Cov(X,Y)=E(XY)一EXEY, 其中 E(X)=[*],E(X
2
)=1,E(Y)=1,E(Y
2
)=[*],D(X)=E(X
2
)一E
2
X=1一[*] D(Y)=E(Y
2
)一E
2
Y=[*] 所以,Cov(X,Y)=0,Cov(Y,Y)=D(Y)=[*],Cov(X—Y,Y)=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/wCX4777K
0
考研数学三
相关试题推荐
对目标进行三次独立炮击。第一次命中率为0.4,第二次命中率为0.5,第三次命中率为0.7.目标中一弹而被击毁的概率为0.2,中两弹被击毁的概率为0.6,中三弹被击毁的概率为0.8.(1)求目标被击毁的概率;(2)已知目标被击毁,求目标中两弹的概率。
设二维随机变量(X,Y)的概率密度为求常数A及条件概率密度fY|X(y|x)。
设k个总体N(μi,σ2)(i=1,…,K)相互独立,从第i个总体中抽得简单样本:
设X1,X2,X3为来自正态总体N(0,σ2)的简单随机样本,则统计量服从的分布为
设A,B为两个随机事件,且求:(Ⅰ)二维随机变量(X,Y)的概率分布;(Ⅱ)X与y的相关系数ρ(X,Y);(Ⅲ)X=X2+Y2的概率分布。
设10件产品有4件不合格品,从中任取两件,已知所取的两件产品中有一件是不合格品,则另一件也是不合格品的概率为______.
在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于的概率为_______.
对于任意两事件A和B()
已知总体X的数学期望E(X)=μ,方差D(X)=σ2,X1,X2,…X2n是来自总体X容量为2n的简单随机样本,样本均值为求E(Y).
设二维随机变量(X,Y)的联合概率密度为求:(I)系数A;(Ⅱ)(X,Y)的联合分布函数;(Ⅲ)边缘概率密度;(Ⅳ)(X,Y)落在区域R:x>0,y>0,2x+3y<6内的概率.
随机试题
甲状腺隐匿性癌的癌块直径多
某女性患者,32岁,口腔多处溃疡1周,疼痛不能进食。检查:双颊、舌黏膜可见小米粒的溃疡十余个.散在分布.周围黏膜充血发红。患者以往曾有多次类似发作病史。该患者应诊断为
在血浆蛋白质中含量最多的是
背景某建筑工程,建筑面积30000m2,地下2层,地上25层,筏板基础,钢筋混凝土剪力墙结构。建设单位依法选择了工程设计单位、工程监理单位、施工总承包单位,并签订了设计、监理、施工总承包合同。施工过程中,当地行政主管部门对其进行节能检查发现部分材料、设备
背景资料:某会议中心新建会议楼工程,为保证室内外装饰效果,经研究决定,装修工程采取单独招标,独立开发,采用公开招标的形式确定施工队伍,建设单位与施工单位按照《建设工程施工合同(示范文本)》签订了装饰装修施工合同。招标阶段,在招标文件中明
下列不属于多因子模型的假设前提的是()。
凡是不能给企业带来未来经济利益的资源,均不能作为资产在资产负债表中反映。()
両親は旅行に行きませんでした。そのお金で新しい冷蔵庫や洗濯機を買いました。両親
TheEnglishLanguageEnglishisthemost【T1】______languageintheworldandismorewidelyspokenandwrittenthan【T2】______
A、Privatelytalkwithhimabouthisillnessandhelp.B、Talkwithhimabouthisplanforhisbachelor’sdegree.C、Thoroughlyexa
最新回复
(
0
)