首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且满足∫01f(x)dx=0,∫01xf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
设f(x)在[0,1]上连续,且满足∫01f(x)dx=0,∫01xf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
admin
2017-10-23
49
问题
设f(x)在[0,1]上连续,且满足∫
0
1
f(x)dx=0,∫
0
1
xf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
选项
答案
令F(x)=∫
0
x
f(t)dt,G(x)=∫
0
x
F(s)ds,显然G(x)在[0,1]可导,G(0)=0,又 G(1)=∫
0
1
F(s)ds[*]F(s)|
0
1
一∫
0
x
sdF(s) =F(1)一∫
0
1
sf(s)ds=0—0=0, 对G(X)在[0,1]上用罗尔定理知,[*]c∈(0,1)使得G’(c)=F(c)=0. 现由F(x)在[0,1]可导,F(0)=F(c)=F(1)=0,分别在[0,c],[c,1]对F(x)用罗尔定理知,[*]ξ
1
∈(0,c),ξ
2
∈(c,1),使得F’(ξ
1
)=f(ξ
1
)=0,F’(ξ
2
)=f(ξ
1
)=0,即f(x)在(0,1)内至少存在两个零点.
解析
为证f(x)在(0,1)内存在两个零点,只需证f(x)的原函数F(x)=∫
0
x
f(t)dt在[0,1]区间上有三点的函数值相等.由于F(0)=0,F(1)=0,故只需再考察F(x)的原函数G(x)=∫
0
x
F(s)ds,证明G(x)的导数在(0,1)内存在零点.
转载请注明原文地址:https://kaotiyun.com/show/wEX4777K
0
考研数学三
相关试题推荐
某厂家生产的一种产品同时在两个市场上销售,售价分别为p1,p2,销售量分别为q1,q2,需求函数分别为q1=24—0.2p1,q2=10—0.05p2,总成本函数为C=35+40(q1+q2),问厂家如何确定两个市场的销售价格,能使其获得总利润最大?最大利
设随机变量X,Y相互独立,且X~N(0,4),Y的分布律为Y~,则P(X+2Y≤4)=________.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1,α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足________.
袋中有a个黑球和b个白球,一个一个地取球,求第k次取到黑球的概率(1≤k≤a+b).
设k>0,则函数f(c)=lnx一+k的零点个数为().
设A为m阶正定矩阵,B为m×n实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设有两个n维向量组(Ⅰ)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1-λ1)β1+…+(ks-λs)βs=0
设Yt,Ct,It分别是t期的国民收入、消费和投资,三者之间有如下关系求Yt.
设生产某种产品必须投入两种要素,x1和x2分别为两要素的投入量,Q为产出量,如果生产函数为Q=2x1αx1β,其中α,β为正常数,且α+β=1.假设两种要素价格分别为p1,p2,试问产出量为12时,两要素各投入多少,可以使得投入总费用最小?
随机试题
超越离合器可以传递速度不同的运动。()
简单说明文字类型的分类标准。
以下哪种有机磷农药中毒病人可能在临床症状好转后数日至1周内再次昏迷,甚至死亡
二甲双胍为
患者,女性,59岁,胃溃疡15年,持续上腹痛2个月。服用西咪替丁、奥美拉唑、制酸药等效果不显著,近3个月来疼痛逐渐加重,不易缓解。根据病情首先考虑的情况是
乙公司欠甲公司一笔工程款,现甲公司将其对乙公司的债权让与丙公司,且通知了乙公司。乙公司不得对丙公司主张的抗辩理由是()。(2010年单项选择第14题)
保险合同主体的变更指()的变更。
民歌按照题材来分,包括劳动工作的号子,谈情说爱的情歌,流传于各族儿童中的歌谣,饮酒作乐的时曲,纪念亲人故友的挽歌,劳动休闲时吟唱的小调,还有民间经常唱的山歌等等。挽歌
Whichcharacteristicsarerepresentativeofalink-stateroutingprotocol?
要清除已经在图片框Picturel中打印的字符串而不清除图片框中的图像,应使用语句()。
最新回复
(
0
)