首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] (I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b)使得f(b)一f(a)=f′(ξ)(b-a). (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f′(x)=
[2009年] (I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b)使得f(b)一f(a)=f′(ξ)(b-a). (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f′(x)=
admin
2019-04-05
147
问题
[2009年] (I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b)使得f(b)一f(a)=f′(ξ)(b-a).
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
f′(x)=A,则f′
+
(0)存在,且f′
+
(0)=A.
选项
答案
(I)证一 如图1.2.4.1所示,弦[*]的方程为 y—f(a)=[*](x—a), 即 y=f(a)+[*](x—a). [*] 由图1.2.4.1易看出直线AB与曲线f(x)相交于A,B两点, 因而在这两点处的函数值相等.据此可构造辅助函数 F(x)=f(x)-[f(a)+[*](x—a)], 使F(x)在点A,B处的函数值相等,因而可对F(x)使用罗尔定理.这是因为F(x)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=0.由罗尔定理知,在(a,b)内存在ξ,使F′(ξ)=0, 即f′(ξ)=[*], 故 f(b)一f(a)=(b一a)f′(ξ). 证二 设想曲线f(x)与直线AB除交于A,B两点外还交于原点(f(0)=0),则可构造辅助函数 F(x)=f(x)一[*], 则 F(a)=F(b)=[*] 由罗尔定理知,在(a,b)内至少存在一点ξ,使F′(ξ)=0,即 f′(ξ)=[*], 亦即 f(b)一f(b)=f′(ξ)(b一a). (Ⅱ)证一 任取x∈(0,δ),在[0,x]上由拉格朗日中值定理知,存在ξ∈(0,x),使 f′(ξ)=[*] 当x→0
+
时,ξ→0
+
.由右导数定义有 f′
-
(0)=[*]=A. 证二 由右导数定义得到 f′
+
(0)=[*]f′(x)=A.
解析
转载请注明原文地址:https://kaotiyun.com/show/wXV4777K
0
考研数学二
相关试题推荐
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
设A是正定矩阵,B是实对称矩阵,证明AB相似于对角矩阵.
判断下列函数的单调性:
证明:χ-χ2<ln(1+χ)<χ(χ>0).
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)内恒为零。
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
随机试题
设x∈[-1,1],则arcsinx+arccosx=_________.
脂肪细胞不能利用甘油是因为缺乏
半夏的归经是()
疝囊壁部分由腹内脏器构成的腹外疝属
治疗厥阴头痛用
对于洁净厂房防火,下列说法正确的是()。
在汉朝以前,史书上关于蹴鞠的记载只有零星碎片,但是从中不难看出,蹴鞠至少起源于春秋战国时代,而且兼具娱乐和锻炼的性质,并且在此后的数千年中,蹴鞠一直兼具这两种性质。到了汉代,蹴鞠得到快速发展。最先对蹴鞠的发展起到关键作用的人物,是刘邦的父亲刘太公。刘邦称帝
Workingatnonstandardtimes—evenings,nights,orweekends—istakingitstollonAmericanfamilies.One-fifthofallemployedAm
一个关系中属性个数为1时,称此关系为
Somepeoplethinkofpoliticsasagame.Butanonlinegamemakespeople【B1】______themselvesdoingoneofthehardestjobsinAm
最新回复
(
0
)