首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)内二阶可导,f’’(x)>0,且又存在点x0,使得f(x0)
设f(x)在(一∞,+∞)内二阶可导,f’’(x)>0,且又存在点x0,使得f(x0)
admin
2017-05-31
35
问题
设f(x)在(一∞,+∞)内二阶可导,f’’(x)>0,且
又存在点x
0
,使得f(x
0
)<0,试证:方程f(x)=0在(一∞,+∞)内有且仅有两个实根.
选项
答案
先证存在性. [*] 于是,可知f(x)在(0,+∞)内单调增加. 任取x∈[M,+∞),f(x)在[M,x]上连续,在(M,x)内可导,由拉格朗日中值定理知,存在点ξ∈(M,x),使得f(x)=f(M)+f’(ξ)(x—M),于是,[*] 又存在点x
0
,使得f(x
0
)<0.所以,由介值定理,存在点ξ
1
∈(x
0
,x),使得f(ξ
1
)=0. 同理可证,当x<0时,存在点ξ
2
∈(x,x
0
),使得f(ξ
2
)=0. 再证唯二性.(反证法) 假若f(x)=0有三个实根ξ
1
,ξ
2
,ξ
3
(ξ
1
<ξ
2
<ξ
3
),由洛尔定理,存在点η
1
∈(ξ
1
,ξ
2
),η
2
∈(ξ
2
,ξ
3
),使得f’(η
1
)=f’(η
2
)=0. 再由洛尔定理,存在点η∈(η
1
,η
2
),使得f’’(η)=0.与题设f’’(x)>0矛盾,故f(x)=0在(一∞,+∞)内有且仅有两个实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/wYu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
[*]
[*]
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,t1t2为实常数.试问t1t2满足什么关系时,β1,β2,…,βs,也为Ax=0的一个基础解系.
设Z=f(exsiny,x2+y2),其中f具有二阶连续偏导数,求
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数.试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积;
求曲面x2+(y一1)2=1介于xOy平面与曲面(x2+y2)之间的部分的面积.
随机试题
在Word中,利用“绘图”工具栏的“椭圆”工具按钮绘制圆形时需要同时按住
是故谋闭而不兴,盗窃乱贼而不作。闭:
活动性原发型肺结核,用药方案首选
临床化学酶活力测定一般采用
A.“有故无陨,亦无殒也”B.大补气血C.治病与安胎并举D.照顾气血E.下胎益母胎堕难留的治疗原则是
A.《新编药物学》B.《药物治疗学:病理生理学的方法》C.《中华人民共和国药典》D.《药物流行病学》E.《注射药物手册》药师在提供药物信息咨询服务时常需查阅各种资料。除药品说明说之外,还可以查阅多种常用药物信息资料查询输液剂的配伍禁忌
下面的图表是有关机构对某市不同年龄段亚健康人群的调查。请根据图表,分别概括躯体、心理和社会适应等三种亚健康类型发生率与年龄的关系。(1)躯体亚健康:_____________________(2)心理亚健康:_____________________
Communicationisthesendingofinformationornewsfromonepersontoanother.Ifhumanbeingscouldnotcommunicatewithonea
党提出并实施依法治国战略经历了一个曲折的历史过程。党的十八届四中全会明确提出,全面推进依法治国;2015年,党和国家将全面依法治国上升为“四个全面”战略布局的重要一环,开启了中国法治新时代。全面依法治国的总目标是
UNIX的两个主要版本为:AT&T的【 】和BSD4.3。
最新回复
(
0
)