首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)用等价、同阶、低阶、高阶回答:设f(x)在x0可微,f’(x0)≠0,则当△x→0时f(x)在x=x0处的微分与△x比较是( )无穷小,△y=f(x0+△x)-f(x0)与△x比较是( )无穷小,与△x比较是( )无穷小 (Ⅱ)设函
(Ⅰ)用等价、同阶、低阶、高阶回答:设f(x)在x0可微,f’(x0)≠0,则当△x→0时f(x)在x=x0处的微分与△x比较是( )无穷小,△y=f(x0+△x)-f(x0)与△x比较是( )无穷小,与△x比较是( )无穷小 (Ⅱ)设函
admin
2016-10-20
65
问题
(Ⅰ)用等价、同阶、低阶、高阶回答:设f(x)在x
0
可微,f’(x
0
)≠0,则当△x→0时f(x)在x=x
0
处的微分与△x比较是( )无穷小,△y=f(x
0
+△x)-f(x
0
)与△x比较是( )无穷小,
与△x比较是( )无穷小
(Ⅱ)设函数y=f(x)可微,且曲线y=f(x)在点(x
0
,f(x
0
))处的切线与直线y=2-x垂直,则
选项
A、-1.
B、0.
C、1.
D、不存在.
答案
B
解析
(Ⅰ)
=f’(x
0
)≠0知这时
与△x是同阶无穷小量;按定义
=f’(x
0
)≠0,故△y与△x也是同阶无穷小量;按微分定义可知当△x→0时差
,即它是比△x高阶的无穷小.
(Ⅱ)由题设可知f’(x
0
)=1.又△y-dy=o(△x),dy=f’(x
0
)△x=△x,于是
,故应选(B).
转载请注明原文地址:https://kaotiyun.com/show/wcT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 A
[*]
一根长为l的棍子在任意两点折断,试计算得到的三段能围成三角形的概率.
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
求下列函数的n阶导数的一般表达式:(1)y=xn+a1xn-1+a2xn-2+…+an-1x+an(a1,a2,…,an都是常数);(2)y=sin2x;(3)y=x-1/x+1;(4)y=ln1+x/1-x.
求下列极限:
设a=3i+5j-2k,b=2i+j+9k,试求λ的值,使得(1)λa+b与z轴垂直;(2)λa+b与a垂直,并证明此时|λa+b|取最小值.
求:微分方程y〞+y=-2x的通解.
已知f(x)是微分方程xf’(x)-f(x)=满足f(1)=0的特解,则∫01f(x)dx=_________.
随机试题
()是指通过隔绝空气,消除助燃物,使燃烧区内的可燃物质无法获得足够的氧化剂助燃,从而使燃烧停止。
特应性角结膜炎晚期并发症不包括
下列哪项不属于"十八反"的药物()
1803年,美国联邦最高法院马歇尔大法官在“马布里诉麦迪逊”一案的判决中这样写道:“马布里有权利得到委任状”拒发委任状侵犯了他的权利,他的国家的法律为此对他提供救济。同时他又判决最高法院无权发出法院强制执行令。“合众国宪法的词语确认和强化了这一应成为所有成
房地产经纪业务中的主要风险有()。
在教学活动中把教书和育人有机地结合起来。这遵循了()的教学原则。
韩国广播公司(KBS)
“对事物从客体的或直观的形式去理解,而不是把它们当做人的感性活动,当做实践去理解。”这是
【F1】We’removing;intoanotherera,asthetoxiceffectsofthebubbleanditsgraveconsequencesspreadthroughthefinancials
TheGrowthofCulturalConsciousness1.ThefirststageNounderstanding:【T1】______ofthenewculture【T1】______2.Thesecondst
最新回复
(
0
)