首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2013年] 已知y1=e3x一xe2x,y2=ex一xe2x,y3=-xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件y∣x=0=0,y′∣x=0=1的解为y=________.
[2013年] 已知y1=e3x一xe2x,y2=ex一xe2x,y3=-xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件y∣x=0=0,y′∣x=0=1的解为y=________.
admin
2021-01-19
32
问题
[2013年] 已知y
1
=e
3x
一xe
2x
,y
2
=e
x
一xe
2x
,y
3
=-xe
2x
是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件y∣
x=0
=0,y′∣
x=0
=1的解为y=________.
选项
答案
利用二阶常系数线性微分方程y"+Py′+qy=f(x)解的性质和结构求之. 先由给出的3个解找出对应的齐次线性微分方程的两个线性无关的解.事实上,利用线性微分方程的性质知,y
1
一y
3
=e
3x
,y
2
-y
3
=e
x
是对应齐次线性微分方程的两个线性无关的解,因而该齐次线性微分方程的通解为Y=C
1
e
3x
+C
2
e
x
.又y
*
=一xe
2x
显然为该非齐次线性微分方程的特解,则由常系数线性微分方程解的结构知,其通解为 y=Y+y
*
=C
1
e
3x
+C
2
e
x
一xe
2x
其中C
1
,C
2
均为任意常数. 由y∣
x=1
=0,y′∣
x=1
=1得到C
1
+C
2
=0,3C
1
+C
2
一l=1,解得C
1
=l,C
2
=一1. 故满足初始条件的解为 y=e
3x
一e
x
一xe
2x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/wu84777K
0
考研数学二
相关试题推荐
设区域D={(x,y)|≤1},其中常数a>b>0.D1是D在第一象限的部分,f(x,y)在D上连续,等式f(x,y)dσ=4f(x,y)dσ成立的一个充分条件是()
设D:χ2+y2≤R2,则=_______.
设A是三阶实对称矩阵,满足A3=2A2+5A—6E,且kE+A是正定矩阵,则k的取值范围是________。
求极限=_______.
[*]其中C为任意常数
若二阶常系数齐次线性微分方程y’’+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’’+ay’+by=x满足条件y(0)=2,y’(0)=0的特解为y=______。
求极限
[2005年]已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1,x2的秩为2.求a的值;
(2005年试题,一)当x→0时,a(x)=kx2与是等价无穷小,则k=__________.
令[*]=t,则原式=∫arctan(1+t)d(t2)=t2arctan91+t)-∫t2/[1+(1+t)2]dt=t2arctan(1+t)-∫[1-((2t+2)/(t2+2t+2))]dt=t2arctan(1+t)-t+ln(t2+2t+2)+
随机试题
_______,女为悦己者容。(《战国策》)
在Excel2010中,有关公式功能的阐述,正确的是_________。
音频电疗法采用的是等幅中频电流,其波形为
入汤剂宜后下的药物是
工程建设项目投资控制关键在于()
社会政策所体现的社会价值,是指在社会中能够代表()利益的价值诉求。
1848年问世的《共产党宣言》中有一句名言:“共产党人可以把自己的理论概括为一句话:消灭私有制。”有学者提出“消灭”应翻译为“扬弃”。理由是原文“Aufhebung”出自黑格尔的《小逻辑》,有既否定又肯定之意,译为“扬弃”则能表示“扬其精华,弃其糟粕”。但
根据材料。回答121-125题。电子技术进口额占进口总额百分比比去年提高了()百分点
WheredidGailspendthenightsinthecountry?
AstheworldexcitedlygreetedSnuppy,thefirstcloned(克隆)dog,commentatorscelebratedourcleverness.Manyfeelproudthatour
最新回复
(
0
)