首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3是Ax=b的3个解向量,且r(A)=1,α1+α2=(1,2,3)T,α2+α3=(0,-1,1)T,α3+α1=(1,0,-1)T,求Ax=b的通解.
设向量组α1,α2,α3是Ax=b的3个解向量,且r(A)=1,α1+α2=(1,2,3)T,α2+α3=(0,-1,1)T,α3+α1=(1,0,-1)T,求Ax=b的通解.
admin
2021-02-25
85
问题
设向量组α
1
,α
2
,α
3
是Ax=b的3个解向量,且r(A)=1,α
1
+α
2
=(1,2,3)
T
,α
2
+α
3
=(0,-1,1)
T
,α
3
+α
1
=(1,0,-1)
T
,求Ax=b的通解.
选项
答案
令β
1
=(α
1
+α
2
)-(α
2
+α
3
)=α
1
-α
3
=(1,3,2)
T
, β
2
=(α
1
+α
2
)-(α
3
+α
1
)=α
2
-α
3
=(0,2,4)
T
, 则β
1
,β
2
为Ax=0的解,且β
1
,β
2
线性无关,而n-r(A)=3-1=2,所以β
1
,β
2
为Ax=0的基础解系.又设[*]为Ax=b的解,所以方程组Ax=b的通解为 [*]
解析
本题考查非齐次线性方程组的解的结构和解的性质.
转载请注明原文地址:https://kaotiyun.com/show/XY84777K
0
考研数学二
相关试题推荐
设α为n维非零列向量,E为n阶单位阵,试证A=E—为正交矩阵。
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
设函数f(x,y,z)一阶连续可偏导且满足f(tx,ty,tz)=tkf(x,y,z).证明:
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
用配方法化二次型f(χ1,χ2,χ3)=χ12+2χ1χ2+2χ1χ3-4χ32为标准形.
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表不;(2)设α1=,α2=,β1=,β2=,求出可由两组向量同时线性表示的向量.
若函数f(x)=x2|x|,则使fn(0)存在的最高阶数为()
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数n为().
随机试题
货币供应量成倍扩张或收缩的程度,在数量上常常用概念表示为()。
信号带宽
为明确诊断,下一步检查应为最可能的诊断为
若尚有总时差为(),则不会影响工期。
某核电站在对其固定资产进行初始计量时,应考虑的因素有()。
资产负债表日后期间发生的“已证实资产发生减损”,一定是调整事项。()
从正方体中裁出如下图所示六个不同的三角形,将其分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
21世纪将是教育大发展的时代,国际化将是教育发展的必然选择。未来教育将自然、社会、人和教育看成是互相依存、互相制约、互相促进、紧密联系的,其中各国教育的改革与发展也将成为一个相互联系、相互制约的有机整体。以下哪项,从上述题干中推出最为恰当?
资本市场有效性假说是由经济学家()提出的。
Aformofbiologicalpestcontrolistoincludevariousplantsinagardenorfieldthatareknownnaturallyto______parasiticp
最新回复
(
0
)