首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(05年)已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2. (I)求a的值; (Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化成标准形; (Ⅲ)求方程f(x1,x2,x3)=0的解.
(05年)已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2. (I)求a的值; (Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化成标准形; (Ⅲ)求方程f(x1,x2,x3)=0的解.
admin
2017-04-20
67
问题
(05年)已知二次型f(x
1
,x
2
,x
3
)=(1一a)x
1
2
+(1一a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2.
(I)求a的值;
(Ⅱ)求正交变换x=Qy,把f(x
1
,x
2
,x
3
)化成标准形;
(Ⅲ)求方程f(x
1
,x
2
,x
3
)=0的解.
选项
答案
(1)f的秩为2,即f的矩阵 [*] 的秩为2.所以有[*]=一4a=0,得a=0. (2)当a=0时,[*]=(λ-2)
2
λ 可知A的特征值为λ
1
=λ
2
=2,λ
3
=0. A的属于λ
1
=2的线性无关的特征向量为 η
1
=(1,1,0)
T
,η
2
=(0,0,1)
T
A的属于λ
3
=0的线性无关的特
解析
转载请注明原文地址:https://kaotiyun.com/show/x0u4777K
0
考研数学一
相关试题推荐
设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)丨x2+y2+z2≤t2},D(t)={(z,y)丨x2+y2≤t2}.证明当t>0时,F(t)>2/πG(t).
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求P-1AP.
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则fˊx(0,1,-1)=________.
设f(x)有二阶连续导数,且f’(0)=0,则
设总体X的概率密度为p(x,λ)=,其中λ>0为未知参数,α>0是已知常数,试根据来自总体X的简单随机样本X1,X2,…,X,求λ的最大似然估计量λ.
(2007年试题,20)设幂级数anxn在(一∞,+∞)内收敛,其和函数y(x)满足y’’一2xy’一4y=0。y(0)=0,y’(0)=1求y(x)的表达式.
(2007年试题,20)设幂级数anxn在(一∞,+∞)内收敛,其和函数y(x)满足y’’一2xy’一4y=0。y(0)=0,y’(0)=1证明
设f(x)=|x|sin2x,则使f(n)(0)存在的最高阶数n=_______.
随机试题
汽车一般由_______、_______、_______和电气设备四大部分组成。
咨询项目竞标包括哪几个主要阶段?
流行病学观察性研究方法不包括
下列关于城市建设用地使用权的表述中,正确的是()。
下列选项中,不属于衡量消费者收入水平指标的是()。
照明质量的影响因素不包括()
文文是吉祥小区的社区工作者,社区内有一位有严重行为偏差的儿童小涛需要接受个案辅导,文文将小涛转介到青少年服务部门进行更深入的个案辅导服务。文文的做法属于()。
在多元化语境下。出现________的情感价值取向实属正常现象,我们充分尊重个人的情感选择,但是,过度________情感的极端自由、极端物欲,其实会给个人的幸福带来许多内伤。填入画横线部分最恰当的一项是()。
Thecaronedrivesmayshowhis/her______orsocialposition.
A、Trytospeeduptheoperationbyanymeans.B、Taketheequipmentapartbeforebeingferried.C、Reducethetransportcostasmu
最新回复
(
0
)