首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
案例: 阅读下列三位教师关于“直线与平面垂直的判定”的教学片段。 教师甲的引入: 教师甲:同学们,空间直线与平面有哪几种位置关系? 学生边演示边叙述,得到直线与平面的三种位置关系。 教师:直线在平面内,直线与平面的平行已研究过,直线与平面相交成为今天要研究
案例: 阅读下列三位教师关于“直线与平面垂直的判定”的教学片段。 教师甲的引入: 教师甲:同学们,空间直线与平面有哪几种位置关系? 学生边演示边叙述,得到直线与平面的三种位置关系。 教师:直线在平面内,直线与平面的平行已研究过,直线与平面相交成为今天要研究
admin
2018-06-07
28
问题
案例:
阅读下列三位教师关于“直线与平面垂直的判定”的教学片段。
教师甲的引入:
教师甲:同学们,空间直线与平面有哪几种位置关系?
学生边演示边叙述,得到直线与平面的三种位置关系。
教师:直线在平面内,直线与平面的平行已研究过,直线与平面相交成为今天要研究的问题。在日常生活中,你见过哪些情景可以抽象成直线与平面相交?举例说明。
学生:日光灯的掉线与天花板相交;房子的柱子与天花板相交;插在碗里的筷子与平的碗底相交。
教师:想象力丰富。生活中确实有很多例子。例如,墙角与地面(图片展示),小区的建筑,竹竿与水平面以及古诗词中的自然景观“大漠孤烟直”,“一行白鹭上青天”。在直线与平面相交的模型中,你认为哪种相交最特殊?
学生:直线与平面垂直。
教师:今天我们就研究这种关系。(板书课题)
教师乙的引入:
教师:(用PPT呈现龙卷风图片)同学们刚进教室看到这样的壮丽图片,联想起“大漠孤烟直”的美景,大家欣赏完之后是否想到立体几何中什么与什么的关系?
学生:线面垂直。
教师:很好,那生活中有没有这样的例子?
学生:看电视时,视线与画面;电线杆与地面垂直。
教师:这样的例子很多。比如,大桥桥柱与水面。正因为生活中有很多线与面垂直关系,所以几何中有必要对此进行研究。这堂课就学习直线与平面垂直。(板书课题)
教师丙的引入:
教师:前面我们研究了直线与平面平行的判定与性质,今天我们要研究直线与平面的其他位置关系。(展示天安门广场上的国旗与旗杆)先请大家看一幅图:天安门广场的红旗迎风飘扬。再看另一幅图:一桥飞架南北,天堑变通途。请大家回答下面的问题。
问题:请同学们观察图片,说出旗杆与地面,大桥桥柱与水平面是什么位置关系?
学生:垂直。
教师:从教学的角度看,就是什么与什么垂直。
学生:线与面。
教师:你还能举出一些类似的例子吗?想一想。(同时出示课题)
学生1:箱的边缘与地面。
学生2:立竿见影,竿与地面垂直。
教师又展示跨栏跳高架的图片,说明跨栏的支架与地面,跳高架立竿与地面是垂直关系,请大家参照旗杆与地面这种关系画出相应的几何图形。
学生画图,教师在黑板上画出图。
教师:为什么画成这样呢?这样直观性强,将直线画得与表示平面的平行四边形的一边垂直。
教师:接着前面的内容的学习,下面我们要学习直线与平面垂直的定义、判定与性质。
问题:
在(1)的基础上,给出你对课题引入的观点。
选项
答案
良好的开端是成功的一半,课题引入是课堂教学的重要一环。教学设计中,应当重点考虑:如何利用新旧知识的联系与发展,以及学生相关的生活经验,创设问题情境,自然、亲切地引出学习内容;如何在课题引入中融入“学什么、为什么、怎么学”的成分。
解析
转载请注明原文地址:https://kaotiyun.com/show/x5tv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
“人机大战”让我们真切地感受到了人工智能带给人类智慧的挑战与压力,促使我们更为深刻地理解人工智能所蕴含的机遇与风险。人工智能的发展说明()。①真理在发展过程中不断地超越自身②实践的发展延伸了人类的认识器官③实践的发展推动着认识的不断深化④认
“在一个文化厚实深沉的社会里,人懂得尊重自己——他不苟且,因为不苟且所以有品位;人懂得尊重别人——他不霸道,因为不霸道所以有道德;人懂得尊重自然——他不掠夺,因为不掠夺所以有永续的智能。”从上述观点中可见()。①文化决定人的交往行为和交往方式②
中国特色社会主义进人了新时代,我国经济发展也进入了新时代,基本特征就是我国经济由高速增长阶段转向高质量发展阶段。“高质量发展”作为新提法、新要求()。①由我国现阶段主要矛盾的变化决定的②体现了追求真理是循环往复的过程③遵循了人类社会发展的普遍
根据以下内容,我们可以得出的正确结论有()。①我国已成为具有全球影响的负责任的地区性大国②当今世界,霸权主义和强权政治依然存在③我国奉行独立自主的和平外交政策④我国在国际事务中发挥着日益重要的作用
《义务教育数学课程标准(2011年版)》对“一元二次方程”的一条要求为:理解配方法,能用配方法、公式法、因式分解法解数学系数的一元二次方程.针对上述要求,完成下列任务.结合实际(如运动、测量等)设计一道一元二次方程的应用题并给出解答.
《义务教育数学课程标准(2011年版)》对“一元二次方程”的一条要求为:理解配方法,能用配方法、公式法、因式分解法解数学系数的一元二次方程.针对上述要求,完成下列任务.针对求解一元二次方程,请设计若干题目,包括例题3~5个,练习题2~3个,帮助学生理解
设Q(x)=x3+px+q,且α,β满足方程组.证明α+β是Q(x)=0的根.
矩阵的属于特征根4的特征向量是()。
案例1:教师:我们以前已经学过了一元一次方程以及二元一次方程组的解法,并简要介绍方法。并在解决许多实际问题的过程中感受到:将相等关系用数学符号抽象后所得到的“方程”确实是一种有效的数学工具,它能让我们的思维过程更加准确和简明!但是,生活中除了相等
设则必有()。
随机试题
A.滋阴补肾B.健脾益气C.活血化瘀D.健脾补肾,佐以渗湿E.泻火解毒,清利肝胆小儿尿路感染急性期,肝胆郁热证的治法是
水质标准是指对特定目的或用途的水中所含杂质或污染物种类与浓度的()。
国有工程监理企业改制为有限责任公司的基本步骤中,产权界定的前一项工作是()
根据《煤矿防治水规定》的规定,防治水工作应当坚持()的原则。
来自( )的应检货物入境时,报检人须按规定提交与包装有关的证书和声明。
刑罚的主刑包括()。
从股东因素考虑,股东限制股利的支付,可达到的目的是()。
下列关于结社自由,说法正确的有()。
Mammalsvaryenormouslyinsize,fromweighinglessthanapennytomeasuringmorethanthreeschoolbusesinlength.Somegroup
Throughouthistory,humanshavesufferedfromaconditionthattheyhaveneverbeenabletoescape—ageing.Someresearchers,how
最新回复
(
0
)