首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维非零向量α不是二阶方阵A的特征向量. 若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
设二维非零向量α不是二阶方阵A的特征向量. 若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
admin
2018-05-25
201
问题
设二维非零向量α不是二阶方阵A的特征向量.
若A
2
α+Aα一6α=0,求A的特征值,讨论A可否对角化;
选项
答案
由A
2
α+Aα-6α=0,得(A
2
+A-6E)α=0, 因为α≠0,所以r(A
2
+A-6E)<2,从而|A
2
+A-6E|=0,即 |3E+A|.|2E-A|=0,则|3E+A|=0或|2E-A|=0. 若|3E+A|≠0,则3E+A可逆,由(3E+A)(2E-A)α=0,得 (2E-A)α=0,即Aα=2α,矛盾; 若|2E-A|≠0,则2E-A可逆,由(2E-A)(3E+A)α=0,得 (3E+A)α=0,即Aα=-3α,矛盾,所以有|3E+A|=0且|2E-A|=0,于是二阶矩阵A有两个特征值-3,2,故A可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/xEW4777K
0
考研数学三
相关试题推荐
设线性无关的函数y1(x),y2(x),y3(x)均是方程yˊˊ+p(x)yˊ+q(x)y=f(x)的解C1,C2是任意常数,则该方程的通解是()
[*]+C,其中C为任意常数
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零.证明:α1,α2,αs,β中任意s个向量线性无关.
n维向量组α1,α2,…,α3(3≤s≤n)线性无关的充要条件是()
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1-α2,α1-2α2+α3,(α1-α3),α1+3α2-4α3,是导出组Ax=0的解向量的个数为()
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系AB=O.证明:若η是齐次线性方程组AX=0的解,则必存在唯一的ξ,使得Bξ=η.
已知η1=[-3,2,0]T,η2=[-1,0,-2]T是线性方程组的两个解向量,试求方程组的通解,并确定参数a,b,c.
设线性方程组有解,则方程组右端=________。
随机试题
没有信息反馈的沟通是()
A.血清总胆红素为1.7~17.1μmaol/LB.清总胆红素为17~34μmol/LC.血清总胆红素为34~170μmol/LD.血清总胆红素为170~340mol/LE.血清总胆红素为350~720mol/L
A.所有的不良反应B.新的和严重的不良反应C.一般药品不良反应D.群体不良反应自首次获准进口之日起5年内的进口药品应当报告()
急性血源性骨髓炎最早病灶部位多在
对混凝土抗渗性起决定作用的是()。【2017年真题】
下列有关借款费用资本化的表述中,正确的有()。
邓小平指出:“一个党,一个国家,一个民族,如果一切从本本出发,思想僵化,迷信盛行,那它就不能前进,它的生机就停止了,就要亡党亡国。”这段话深刻阐明了()。
事业单位改革的目标是实现社会资源配置和服务的社会化。()
设函数f(x,y)在D上连续,且其中D由,x=1,y=2围成,求f(x,y).
[A]Monitoryouralcoholuse[B]Payattentiontotablemanners[C]Don’tbeagossip[D]Networkwithhigher-ups[
最新回复
(
0
)