首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)在[0,π]上连续,在(0,π)内可导,且f(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
设f(t)在[0,π]上连续,在(0,π)内可导,且f(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
admin
2019-03-21
59
问题
设f(t)在[0,π]上连续,在(0,π)内可导,且
f(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
选项
答案
令F(x)=[*],因为F(0)=F(π)=0,所以存在x
1
∈(0,π),使得F’(x
1
)=0,即f(x
1
)sinx
1
=0,又因为sinx
1
≠0,所以f(x
1
)=0. 设x
1
是f(x)在(0,π)内唯一的零点,则当x∈(0,π)且x≠x
1
时,有sin(x-x
1
)f(x)恒正或恒负,于是[*],矛盾,所以f(x)在(0,π)内至少有两个零点.不妨设f(x
1
)=f(x
2
)=0,x
1
,x
2
∈(0,π)且x
1
<x
2
,由罗尔中值定理,存在ξ∈(x
1
,x
2
)[*](0,π),使得f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/xLV4777K
0
考研数学二
相关试题推荐
已知函数y=f(x)对一切的x满足xf’’(x)+3x[f’(x)32=1一e-x,若f’x0)=0(x0≠0),则()
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证:[∫01f(x)dx]2>∫01f3(x)dx.
设函数f(x)反函数g(x),且f(a)=3,f’(a)=1,f"(a)=2,求g"(3).
设f’(x)存在,求极限,其中a,b为非零常数.
设f(x)在[1,+∞)可导,[xf(x)]≤-kf(x)(x>1),在(1,+∞)的子区间上不恒等,又f(1)≤M,其中k,M为常数,求证:f(x)<(x>1).
设z=f(x,y,u),其中f具有二阶连续偏导数,u(x,y)由方程u5-5xy+5u=1确定.求
设A为3阶矩阵,α1,α2,α3是线性的无关3维列向量组,满足Aα1=α1+2α2+2α3,Aα2=2α1+α2+2α3,Aα3=2α1+2α2+α3.(1)求A的特征值.(2)判断A是否相似于对角矩阵?
设f(χ)在区间[0,1]上连续,证明:∫01f(χ)dχ∫χ1f(y)dy=[∫01f(χ)dχ]2.
设f(χ)=,求f(χ)的间断点并判断其类型.
设f(χ)在(a,b)上有定义,c∈(a,b),又f(χ)在(a,b)\{c}连续,c为f(χ)的第一类间断点.问f(χ)在(a,b)是否存在原函数?为什么?
随机试题
根据药物特性,不能用于口服的是()。
适用于制作蔬菜的玉米类型是________。
可证明痰液来自肺及支气管深部的痰液涂片需要见到的细胞为
贸易术语具有两重性,即一方面表示交货条件,另一方面表示成交价格的构成因素,这两者是无关联的。()
根据有关规定,可以不征或免征土地增值税的有()。
当产品的市场需求处于充分需求状态时,企业通常应进行()市场营销。
教育是社会主义现代化建设的基础,国家保障教育事业()
当你端着满满的一杯咖啡行走时,如果你的眼睛老是盯着液面,心中总在设法使之平衡,结果你会发现咖啡液面的波动会越来越剧烈,以至溅出杯子。相反,如果你不过分地小心翼翼,大胆地走,它反而不会溅出杯子。政府对经济的干预也是这样,_______。横线处应填入
Entertheinformationage.Informationistherawmaterialformanyofthebusinessactivitiesshapingthisnewera,(1)_____ir
Thispassageisfromapieceof______.Whatdoyouknowaboutthecenter’semployees?
最新回复
(
0
)