首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)在[0,π]上连续,在(0,π)内可导,且f(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
设f(t)在[0,π]上连续,在(0,π)内可导,且f(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
admin
2019-03-21
54
问题
设f(t)在[0,π]上连续,在(0,π)内可导,且
f(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
选项
答案
令F(x)=[*],因为F(0)=F(π)=0,所以存在x
1
∈(0,π),使得F’(x
1
)=0,即f(x
1
)sinx
1
=0,又因为sinx
1
≠0,所以f(x
1
)=0. 设x
1
是f(x)在(0,π)内唯一的零点,则当x∈(0,π)且x≠x
1
时,有sin(x-x
1
)f(x)恒正或恒负,于是[*],矛盾,所以f(x)在(0,π)内至少有两个零点.不妨设f(x
1
)=f(x
2
)=0,x
1
,x
2
∈(0,π)且x
1
<x
2
,由罗尔中值定理,存在ξ∈(x
1
,x
2
)[*](0,π),使得f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/xLV4777K
0
考研数学二
相关试题推荐
函数y=Cx+=x而言,()
设y=y(x)是由方程2y3-2y2+2xy-x2=1确定的,求y=y(x)的驻点,并判定其驻点是否是极值点?
求函数f(x)=在区间[e,e2]上的最大值.
设=0,试确定常数a,b的值.
若α1,α2,α3线性无关,那么下列线性相关的向量组是
设齐次方程组(I)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
3阶实对称矩阵A的特征值为1,2,-2,α1=(1,-1,1)T是A的属于1的特征向量.记B=A5-4A3+E.(1)求B的特征值和特征向量.(2)求B.
设α1,α2……αn为n个线性无关的n维列向量,β1,β2,…,βn为任意n个n维列向量。证明:α1,α2……αn可由β1β2……βn线性表示的充要条件是β1β2……βn线性无关。
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(A)=f(B)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
随机试题
Youcandoitifyouwantto,butinmyopinionit’snotworththe______itinvolves.
下列哪一项对心瓣膜功能的叙述是错误的()
宫颈活检为鳞癌,正确的诊断是患者进行了放疗,下列哪项治疗目的是正确的
离子交换法适宜分离
下列选项中不属于无效合同的特征的是()
会计的基本职能是( )。
古巴比伦王国的文明表现在()。
在窗体上画两个单选按钮,名称分别为Option1和Option2,标题分别为“黑体”和“楷体”;一个复选框,名称为Check1,标题为“粗体”。要求程序运行时,“黑体”单选按钮和“粗体”复选框被选中,则能够实现上述要求的语句序列是()。
Readtheextractbelowfromtheannualreportofacompanywithmanufacturinginterestsaroundtheworld.Choosethebestwo
differ,experience,inform,little,patience,prefer,quality,rely,limit,tame,familiar,violateThoughbountyhuntin
最新回复
(
0
)