首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,1,1)T,α2=(1,—1,—1)T,求与α1,α2均正交的单位向量β并求与向量组α1,α2,β等价的正交单位向量组。
设α1=(1,1,1)T,α2=(1,—1,—1)T,求与α1,α2均正交的单位向量β并求与向量组α1,α2,β等价的正交单位向量组。
admin
2019-03-23
39
问题
设α
1
=(1,1,1)
T
,α
2
=(1,—1,—1)
T
,求与α
1
,α
2
均正交的单位向量β并求与向量组α
1
,α
2
,β等价的正交单位向量组。
选项
答案
令β=(x
1
,x
2
,x
3
)
T
,由于β与α
1
,α
2
均正交,则可得方程组[*]解得方程组的基础解系为(0,1,—1)
T
,单位化为[*]。 欲求与向量组α
1
,α
2
,β等价的正交单位向量组,需先将α
1
,α
2
正交化(β与α
1
,α
2
已经正交,不需要再正交化)。 令 β
1
=α
1
=(1,1,1)
T
, [*] 再单位化,得(1,1,1)
T
→[*],可知向量组[*]就是与α
1
,α
2
,β等价的正交单位向量组。
解析
转载请注明原文地址:https://kaotiyun.com/show/xTV4777K
0
考研数学二
相关试题推荐
设A与B分别是m,n阶矩阵,证明
设A是n阶实反对称矩阵,证明(E-A)(E+A)-1是正交矩阵.
矩阵A=,求解矩阵方程2A=XA-4X.
设α1,α2,α3,α4是3维非零向量,则下列说法正确的是
设A是m×n矩阵,B是n×m矩阵,则()
若α1,α2,α3线性无关,那么下列线性相关的向量组是
当a,b取何值时,方程组有唯一解,无解,有无穷多解?当方程组有解时,求其解.
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数K>0。假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的7/8,问雪堆全部融化需要多少小时?
假设A是n阶方阵,其秩r<n.那么在A的n个行向量中
随机试题
阅读《说笑》的第一段:自从幽默文学提倡以来,卖笑变成了文人的职业。幽默当然用笑来发泄,但是笑未必就表示着幽默。刘继庄《广阳杂记》云:“驴鸣似哭,马嘶如笑。”而马并不以幽默名家,大约因为脸太长的缘故。老实说,一大部分人的笑,也只等于马鸣萧萧,充不得
She’supstairs______letters.
全身性皮肤瘙痒中,下列哪项是正确的
“一夫法”是指将食、中、无名、小指相并,四横指的间距为3寸,其量取标准应按
具酸碱两性的生物碱是
监理工程师在收到承包方送交的索赔报告和有关资料后,于( )天内给予答复。
清代功举办过几次的“千叟宴”,是清宫中的规模最大、与宴者最多的盛大御宴。()
关于凸极同步发电机短路,下列说法正确的有()。
在数据库中,产生数据不一致的根本原因是()。
法国古典主义的奠基之作是_______,所谓“熙德”即阿拉伯语_______之意。
最新回复
(
0
)