首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元线性方程组Ax=b,其中 当a为何值时,该方程组有无穷多解,并求通解。
设n元线性方程组Ax=b,其中 当a为何值时,该方程组有无穷多解,并求通解。
admin
2019-03-23
33
问题
设n元线性方程组Ax=b,其中
当a为何值时,该方程组有无穷多解,并求通解。
选项
答案
当a=0时,方程组为 [*] 此时方程组系数矩阵的秩和增广矩阵的秩均为n—1,所以方程组有无穷多解,其通解为 x=(0,1,…,0)
T
+k(1,0,…,0)
T
,其中k为任意常数。
解析
考查的是非齐次线性方程组解的判定。当系数矩阵的秩等于增广矩阵的秩(设为r)时有解,且r<n时有无穷多解,r=n时,有唯一解。
转载请注明原文地址:https://kaotiyun.com/show/xXV4777K
0
考研数学二
相关试题推荐
当a,b取何值时,方程组有唯一解,无解,有无穷多解?当方程组有解时,求其解.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
设线性方程组为(1)讨论a1,a2,a3,a4取值对解的情况的影响.(2)设a1=a3=k,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
已知ξ1=(-3,2,0)T,ξ2=(-1,0,-2)T是方程组的两个解,则此方程组的通解是________.
设A是正定矩阵,B是实对称矩阵,证明AB相似于对角矩阵.
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在ξ∈(0,3),使f’’(ξ)=0。
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在η∈(0,2),使f(n)=f(0);
求下列函数的导数y′:(Ⅰ)y=arctan:(Ⅱ)y=sinχ.
随机试题
main(){inta[3]={0,1,2};inti;scarf("%d",&a);for(i=1;i<3;i++)a[0]=a[0]+a[i];printf("a[0]=%d\n",a[
10个月发育性髋关节脱位轻症患儿的治疗宜采用()
引起闭经少见的一项是
病人表现为表情淡漠,寡言少语,闷闷不乐,精神发呆,哭笑无常其病机是
某市安监局向甲公司发放《烟花爆竹生产企业安全生产许可证>后,发现甲公司所提交的申请材料系伪造。对于该许可证的处理,下列哪一选项是正确的?(卷二真题试卷第42)
施工阶段的监理,可有较多的( )职称人员从事实际工作。
加工贸易剩余料件如作()处理,必须填制报关单报关。
“燕南寄庐”是()的私宅。
教学策略
设f(x)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫0ξf(t)dt+(ξ-1)f’(ξ)=0.
最新回复
(
0
)