首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次方程组(I) 有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T. 证明A的行向量组是齐次方程组(Ⅱ) 的通解.
设齐次方程组(I) 有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T. 证明A的行向量组是齐次方程组(Ⅱ) 的通解.
admin
2017-06-08
71
问题
设齐次方程组(I)
有一个基础解系β
1
=(b
11
,b
12
,…,b
1×2n
)
T
,β
2
=(b
21
,b
22
,…,b
2×2n
)
T
,…,β
n
=(b
n1
,b
n2
,…,b
n×2n
)
T
.
证明A的行向量组是齐次方程组(Ⅱ)
的通解.
选项
答案
分别记A和B为(Ⅰ)和(Ⅱ)的系数矩阵. (Ⅰ)的未知量有2n个,它的基础解系含有n个解,则r(A)=n,即A的行向量组α
1
,α
2
,…,α
n
线性无关. 由于β
1
,…,β
n
都是(I)的解,有AB
T
=(Aβ
1
,Aβ
2
,…,Aβ
n
)=0,转置得BA
T
=0,即Bα
i
T
=0,i=1,…,n.于是,α
1
,α
2
,…,α
n
是(Ⅱ)的n个线性无关的解.又因为r(B)=n,(Ⅱ)也有2n个未知量,2n-r(B)=n.所以α
1
,α
2
,…,α
n
是(Ⅱ)的一个基础解系.从而(Ⅱ)的通解为 c
1
α
1
+c
2
α
2
+…+c
n
α
n
,c
1
,c
2
,…,c
n
可取任意数.
解析
转载请注明原文地址:https://kaotiyun.com/show/xct4777K
0
考研数学二
相关试题推荐
1/4
设f(x)=3x2+Ax-3,问正数A至少为何值时,可使对任意的x∈(0,+∞),都有f(x)≥20.
某商品的价格P与需求量Q的关系为P=10-Q/5(1)求需求量为20及30时的总收益R、平均收益R及边际收益Rˊ;(2)Q为多少时总收益最大?
求下列数项级数的和.
生产x单位产品的总成本C为x的函数:求:(1)生产900单位时的总成本和平均单位成本;(2)生产900单位到1000单位时总成本的平均变化率;(3)生产900单位和1000单位时的边际成本.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2,(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
计算二重积分,其中区域D为曲线r=1+cosθ(0≤0≤π)与极轴围成.
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
设已知线性方程组Ax=6存在2个不同的解。求方程组Ax=b的通解.
求微分方程xy+y=xex满足y(1)=1的特解.
随机试题
∫x(x2-5)4dx=________。
下列疾病哪种可能性大首选的处理方法
原发性肝癌的标志物为
根据《银行业监督管理法》有关规定,银监会有权查询涉嫌违法账户和冻结涉嫌转移或者隐匿的违法资金。()
下列选项中,哪项不属于心理过程?()
①楼市远未到健康发展的程度,然而这并不妨碍我们认识一个真实的中国楼市格局②而长期来看,让市场起决定性作用,无可避免地将成为中国楼市发展的方向③无论看涨者和看跌者找到多少理由支持自己的观点,楼市的大格局就摆在那里④于是乎,各色看
Themythologyofaculturecanprovidesomevitalinsightsintothebeliefsandvaluesofthatculture.Byusingfantasticands
Pentium微处理器工作在实地址模式,使用A19-A0的20根地址线,该处理器支持的最大物理地址空间为_______。
ItwasadaythatMichaelEisnerwouldundoubtedlyliketoforget.SittinginaLosAngeleswitnessboxforfourhourslastweek
A、Sheknowshowtowritebest-sellingnovels.B、Shecanearnalotofmoneybywritingforadults.C、Sheisabletowinenoughs
最新回复
(
0
)