记方程组(I)和(Ⅱ)的系数矩阵分别是A和B.由于曰的每一行都是Ax=0的解,故ABT=0,那么BAT=(AB)T=0.因此,A的行向量是方程组(Ⅱ)的解. 由于曰的行向量是(I)的基础解系,它们应线性无关,从而知r(B)=n.且由(I)的解的结构,知 2

admin2012-05-18  45

问题

选项

答案记方程组(I)和(Ⅱ)的系数矩阵分别是A和B.由于曰的每一行都是Ax=0的解,故ABT=0,那么BAT=(AB)T=0.因此,A的行向量是方程组(Ⅱ)的解. 由于曰的行向量是(I)的基础解系,它们应线性无关,从而知r(B)=n.且由(I)的解的结构,知 2n-r(A)=n.故r(A)=n.于是A的行向量线性无关. 对于(Ⅱ),由2n-r(B)=n知(Ⅱ)的基础解系由n个线性无关的解向量所构成,所以A的行向量 就是(Ⅱ)的一个基础解系.于是(Ⅱ)的通解为:k1(a11,a12,…,a1.2n)T+k2(a21,a22,…,a2.2n)T+kn(an1,an2,…,an,2n)T,其中k1,k2,…,kn。是任意常数.

解析
转载请注明原文地址:https://kaotiyun.com/show/D4C4777K
0

最新回复(0)