首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
记方程组(I)和(Ⅱ)的系数矩阵分别是A和B.由于曰的每一行都是Ax=0的解,故ABT=0,那么BAT=(AB)T=0.因此,A的行向量是方程组(Ⅱ)的解. 由于曰的行向量是(I)的基础解系,它们应线性无关,从而知r(B)=n.且由(I)的解的结构,知 2
记方程组(I)和(Ⅱ)的系数矩阵分别是A和B.由于曰的每一行都是Ax=0的解,故ABT=0,那么BAT=(AB)T=0.因此,A的行向量是方程组(Ⅱ)的解. 由于曰的行向量是(I)的基础解系,它们应线性无关,从而知r(B)=n.且由(I)的解的结构,知 2
admin
2012-05-18
88
问题
选项
答案
记方程组(I)和(Ⅱ)的系数矩阵分别是A和B.由于曰的每一行都是Ax=0的解,故AB
T
=0,那么BA
T
=(AB)
T
=0.因此,A的行向量是方程组(Ⅱ)的解. 由于曰的行向量是(I)的基础解系,它们应线性无关,从而知r(B)=n.且由(I)的解的结构,知 2n-r(A)=n.故r(A)=n.于是A的行向量线性无关. 对于(Ⅱ),由2n-r(B)=n知(Ⅱ)的基础解系由n个线性无关的解向量所构成,所以A的行向量 就是(Ⅱ)的一个基础解系.于是(Ⅱ)的通解为:k
1
(a
11
,a
12
,…,a
1
.2n)
T
+k
2
(a
21
,a
22
,…,a
2
.2n)
T
+k
n
(a
n1
,a
n2
,…,a
n
,2n)
T
,其中k
1
,k
2
,…,k
n
。是任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/D4C4777K
0
考研数学二
相关试题推荐
[*]
已知A是3阶矩阵,αi(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令α=α1+α2+α3.(I)证明:α,Aα,A2α线性无关;(II)设P=(α,Aα,A2α),求P-1AP.
已知空问三个平面aix+biy+cix+di=0(i=1,2,3)的三条交线互相平行,则线性方程组的系数矩阵A和增广矩阵A的秩分别为rA=_____,_____.
设A从原点出发,以固定速度υ0沿y轴正向行驶,B从(x0,0)出发(x0<0),以始终指向点A的固定速度υ1朝A追去,求B的轨迹方程.
α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,—1,—3)T,α4=(0,0,3,a)T,β=(1,b,3,2)T.①a取什么值时α1,α2,α3,α4线性相关?此时求α1,α2,α3,α4的一个极大线性无关组,并且把其余向量用
设平面区域D(t)={(x,y)|0≤x≤y,0<t≤y≤1},f(t)==___________.
设总体X服从[0,θ]上的均匀分布,X1,X2,X3,…,Xn是取自总体X的一个简单随机样本,试求:(I)未知参数θ的最大似然估计量;(Ⅱ)的值。
实数域上二阶方阵所构成的线性空间V中,求它的一组基与维数.
求矩阵的特征值和特征向量:(1)
设D是由曲线y=x-x2与x轴围成的平面图形,直线y=kx将D分成D1与D2两部分(如右图所示),若D1的面积s1与D2的面积s2之比.
随机试题
代码设计要针对信息的处理环节,其中包括_____________。
《________》是我国先秦时期的一部语录体散文集,主要记载孔子及其弟子的言行。
护士长在管理过程中,遇到问题时经常发动护士们共同讨论,共同商量,集思广益,然后决策,并要求病房护士每个人各尽所能,各施其长,分工合作,这种领导作风属于
零售商业物业经营管理的选址与规划中,()是指购物中心所处的位置、建筑风格以及特有标识应当很容易获得路人的关注,并将他们吸引到中心里来。
社会问题属于社会学传统的研究领域,下列关于社会问题的说法中,错误的是()。
以毛泽东为核心的第一代领导集体在探索中国社会主义建设道路中取得哪些重要成果?这些成果与邓小平理论的形成有何关系?
ITU标准OC-12的传输速率为()。
下列关于二叉树的叙述中,正确的是()。
Ajobinterviewhelpsyoudecideifthejobmeetsyourcareerneedsandinterest.
A、$100.B、$150.C、200D、400A
最新回复
(
0
)