首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组A:α1=(0,1,2,3)T,α2=(3,0,1,2)T,α3=(2,3,0,1)T;B:β1=(2,1,1,2)T,β2=(0,一2,1,1)T,β3=(4,4,1,3)T.试证B组能由A组线性表示,但A组不能由B组线性表示.
已知向量组A:α1=(0,1,2,3)T,α2=(3,0,1,2)T,α3=(2,3,0,1)T;B:β1=(2,1,1,2)T,β2=(0,一2,1,1)T,β3=(4,4,1,3)T.试证B组能由A组线性表示,但A组不能由B组线性表示.
admin
2016-01-11
48
问题
已知向量组A:α
1
=(0,1,2,3)
T
,α
2
=(3,0,1,2)
T
,α
3
=(2,3,0,1)
T
;B:β
1
=(2,1,1,2)
T
,β
2
=(0,一2,1,1)
T
,β
3
=(4,4,1,3)
T
.试证B组能由A组线性表示,但A组不能由B组线性表示.
选项
答案
对由两组向量构成的矩阵施初等行变换: [*] 由此可知r(A)=r(A,B)=3,所以向量组B能由向量组A线性表示. 又由于 [*] 得r(B)=2≠r(A,B),所以向量组A不能由向量组B线性表示.
解析
本题考查两向量组的线性表示.要求考生掌握B组能由A组线性表示的充分必要条件r(A)=r(A,B).
转载请注明原文地址:https://kaotiyun.com/show/xi34777K
0
考研数学二
相关试题推荐
微分方程(y2-6x)y’+2y=0(y≥1)满足y(0)=1的解为________.
设A是3阶方阵,λ1=1,λ2=-2,λ3=-1为A的特征值,对应的特征向量依次为a1,a2,a3,P=(3a2,2a3,-a1),则P-1(A*+E)P=()
设3维列向量组a1,a2,a3线性无关,向量组a1-a2,a2+a3,-a1+aa2+a3线性相关,则a=()
设,其中a,b均为常数,且a>b,b≠0,则()
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).求正交矩阵Q,使得Q-1AQ=A.
设4维列向量a1,a2,a3线性无关,若非零向量β1,β2,β3,β4均与a1,a2,a3正交,则r(β1,β2,β3,β4)=()
已知y=f,f’(x)=arctanx2,则|x=0=________.
设ξ为f(x)=arctanx在[0,a]上使用微分中值定理的中值,则为().
设f(x)连续,且∫0xtf(2x-t)dt=1/2arctanx2,f(1)=1,求∫12f(x)dx.
随机试题
MostpeoplebuyalotofgiftsjustbeforeChristmas.Butsomepeoplethinktheybuytoomuch.Theyhavestartedaspecialdayc
A.桑菊饮B.麻杏石甘汤C.银翘散D.透疹凉解汤E.银翘散合养阴清肺汤麻疹邪郁肌表首选的方剂是
对青霉素过敏的支气管肺炎患者应选用
关于重度妊高征的治疗,下列哪项不适宜
患者,女性,45岁。外出活动时足底不慎被锈钉刺伤,出现全身肌肉强直性收缩,阵发性痉挛,来急诊就诊,考虑可能为破伤风。破伤风患者护理中环境温、湿度应为
下列属于《公民道德建设实施纲要》所要提出的职业道德规范是()。
五个女人M、N、O、P、Q经常聚在一起编织,她们编织的东西有:毛衣、袜子、披肩、围巾、围裙,喜欢吃的甜点有:果酱饼干、消化饼、生姜饼干、黄油饼干和朱古力饼干;喜欢喝的有:咖啡、茶、水、橙汁和汤。并已知以下信息:(1)P喜欢黄油饼干,但不喜欢喝汤。(2)
在19世纪60年代到90年代,洋务派兴办洋务事业的主要目的是
求ydxdy,其中D是由L:(0≤t≤2π)与x轴围成的区域.
DothefollowingstatementsagreewiththeviewsofthewriterinReadingPassage3?Inboxes33-37onyouranswersheet,write
最新回复
(
0
)