首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为n+1阶可导函数,求证:f(x)为n次多项式的充要条件是f(n+1)(x)≡0,f(n)(x)≠0.
设f(x)为n+1阶可导函数,求证:f(x)为n次多项式的充要条件是f(n+1)(x)≡0,f(n)(x)≠0.
admin
2018-06-27
71
问题
设f(x)为n+1阶可导函数,求证:f(x)为n次多项式的充要条件是f
(n+1)
(x)≡0,f
(n)
(x)≠0.
选项
答案
由带拉格朗日余项的n阶泰勒公式得 f(x)=f(0)+f’(0)x+…+[*]f
(n)
(0)x
n
+[*]x
n+1
. 若f
(n+1)
(x)≡0,f
(n)
(x)≠0,由上式[*] f(x)=f(0)+f’(0)x+…+[*]f
(n)
(0)x
n
是n次多项式. 反之,若f(x)=a
n
x
n
+a
n-1
x
n-1
+…+a
1
x+a
0
(a
n
≠0)是n次多项式,显然 f
(n)
(x)=a
n
n!≠0,f
(n+1)
(x)≡0.
解析
转载请注明原文地址:https://kaotiyun.com/show/xik4777K
0
考研数学二
相关试题推荐
设,B是3阶非零矩阵,满足BA=0,则矩阵B=_______.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A的特征值;
设其中f(s,t)有连续的二阶偏导数.求
设其中f(s,t)有连续的二阶偏导数.求du.
设n阶实对称矩阵A满足A2=E,且秩r(A+E)=k
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
已知A是3阶矩阵,αi(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令α=α1+α2+α3设P=(α,Aα,A2α),求P-1AP.
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
y=2x的麦克劳林公式中xn项的系数是________.
随机试题
下列各项对未分配利润的表述中,正确的有()。
OnThursdayafternoonMrs.Clarke,dressedforgoingout,tookherhandbagwithhermoneyandherkeyinit,pulledthedoorbeh
毛果芸香碱属,
小李因殴打小马受到公安局处罚,公安局鉴定小马为轻微伤。小马认为自己是重伤,以公安局对小李处罚过轻为由向法院提起行政诉讼。法院在诉讼期间对小马的伤势重新鉴定,结论为轻伤。法院应当如何处理?()
新建商品房客户营销方式,大体上分为电话营销、()以及交易后的客户关系维护。[2009年考试真题]
项目建设方案一般包括()等。
按照评价角度的不同,下列属于财务现金流量表的有()。
导游服务集体的任务是()旅游接待计划。
现阶段我们制定路线、方针、政策的根本出发点是社会主义初级阶段理论。()
Yourhairwantscuttingyou’dbetterhaveitdonetomorrow,
最新回复
(
0
)