首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为n+1阶可导函数,求证:f(x)为n次多项式的充要条件是f(n+1)(x)≡0,f(n)(x)≠0.
设f(x)为n+1阶可导函数,求证:f(x)为n次多项式的充要条件是f(n+1)(x)≡0,f(n)(x)≠0.
admin
2018-06-27
51
问题
设f(x)为n+1阶可导函数,求证:f(x)为n次多项式的充要条件是f
(n+1)
(x)≡0,f
(n)
(x)≠0.
选项
答案
由带拉格朗日余项的n阶泰勒公式得 f(x)=f(0)+f’(0)x+…+[*]f
(n)
(0)x
n
+[*]x
n+1
. 若f
(n+1)
(x)≡0,f
(n)
(x)≠0,由上式[*] f(x)=f(0)+f’(0)x+…+[*]f
(n)
(0)x
n
是n次多项式. 反之,若f(x)=a
n
x
n
+a
n-1
x
n-1
+…+a
1
x+a
0
(a
n
≠0)是n次多项式,显然 f
(n)
(x)=a
n
n!≠0,f
(n+1)
(x)≡0.
解析
转载请注明原文地址:https://kaotiyun.com/show/xik4777K
0
考研数学二
相关试题推荐
设f(x)在(-1,1)内具有二阶连续导数且f"(x)≠0,试证:(1)对于(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;(2).
设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b).证明:在(a,b)内至少存在一点ξ,使得f’(ξ)>0.
设曲线l位于xOy平面的第一象限内,l上任一点M处的切线与Y轴总相交,交点记为A.已知,且l过点,求l的方程.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).(1)证明∫-aaf(x)g(x)dx=A∫0ag(x)dx;(2)利用(1)的结论计算定积分|sinx|arct
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,)如果齐次线性方程组Ax=0与BBx=0有非零公共解
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费z,(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x2+32x2—8x1x2一2x12一10x22.(1)在广告
求arctanχ带皮亚诺余项的5阶麦克劳林公式.
随机试题
个体化药物治疗是指
A.气胸B.肝功能损害C.胆囊结石D.难以控制的高血糖肠外营养糖代谢紊乱可导致
以下取穴是以前后配穴法为配穴原则的有
A.胸骨后甲状腺肿B.胸腺瘤C.畸胎瘤D.心包囊肿E.淋巴肉瘤X线可见骨骼或牙的肿瘤
心跳停止后,必须建立有效人工循环的时限为
甲公司与乙公司均为增值税一般纳税人,销售商品适用的增值税税率为17%。2×17年1月1日,甲公司销售一批材料给乙公司,含税价格为130万元,款项尚未收到。2×17年7月1日,乙公司发生财务困难,无法按合同规定偿还债务,经双方协商,甲公司同意乙公司用产品抵偿
阅读材料回答后面的问题。美国著名学者斯塔夫里阿诺斯在其所著的《全球通史》中写到:在中国长达数千年的历史中,曾有过三次从根本上改变了中国政治和社会结构的大革命。第一次发生在公元前221年,它结束了封建领主制,创立了中央集权制的帝国;第二次发生在19
TravelingtoMarsisusuallya【C1】________business—withasinglespacecrafttakingofffromasinglelaunchpadfortheseven-mon
关于SIP协议的描述中,错误的是()。
Routinelyputtinginextrahoursattheofficecanputastrainonyoursociallife.Butcantoomuchovertimecausedepression?
最新回复
(
0
)