首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs均为n维向量,下列结论中不正确的是( )
设α1,α2,…,αs均为n维向量,下列结论中不正确的是( )
admin
2020-03-01
26
问题
设α
1
,α
2
,…,α
s
均为n维向量,下列结论中不正确的是( )
选项
A、若对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0,则α
1
,α
2
,…,α
s
线性无关。
B、若α
1
,α
2
,…,α
s
线性相关,则对于任意一组不全为零的数后。k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0。
C、α
1
,α
2
,…,α
s
线性无关的充分必要条件是此向量组的秩为s。
D、α
1
,α
2
,…,α
s
线性无关的必要条件是其中任意两个向量线性无关。
答案
B
解析
对于选项A,因为齐次线性方程组x
1
α
1
+x
2
α
2
+…+x
s
α
s
=0只有零解,故α
1
,α
2
,…,α
s
线性无关,选项A正确。
对于选项B,由α
1
,α
2
,…,α
s
线性相关知,齐次线性方程组x
1
α
1
+x
2
α
2
+…+x
s
α
s
=0存在非零解,但该方程组存在非零解,并不意味着任意一组不全为零的数均是它的解,因此选项B是错误的。
选项C是教材中的定理。
由“无关组减向量仍无关”(线性无关的向量组其任意部分组均线性无关)可知选项D也是正确的。综上可知,应选B。
转载请注明原文地址:https://kaotiyun.com/show/xjA4777K
0
考研数学二
相关试题推荐
已知平面区域D满足|x|≤y,(x2+y2)3≤y4,求.
设A是三阶实对称矩阵,E是三阶单位矩阵,若A2+A=2E.且|A|=4,则二次型xTAx规范形为()
设当x→0时,f(x)=ln(1+x∫)一ln(1+sin∫x)是x的n阶无穷小,则正整数n等于
设A=E一2ξξT,其中ξ=(x1,x2,…,xn)T,且有ξTξ=1。则①A是对称矩阵;②A2是单位矩阵;③A是正交矩阵;④A是可逆矩阵。上述结论中,正确的个数是()
设向量组(I)α1,α2,…,αr可由向量组(Ⅱ)β1,β2,…,βs线性表示,则()
若由曲线,曲线上某点处的切线以及x=1,x=3围成的平面区域的面积最小,则该切线是().
设m,n均是正整数,则反常积分的收敛性()
设η1,…,ηs是非齐次线性方程组AX=b的一组解,则k1η1+…+ksηs为方程组AX=b的解的充分必要条件是_______.
设则a=______。
设则(A-1)*=_________.
随机试题
患者男,63岁,9个月前因喉癌(T2N1M0)行全喉切除+右侧功能性颈清扫术,术后有咽瘘发生,经换药1个月后愈合,之后行放疗。现右侧颈部胸锁乳突肌前缘处皮肤溃烂、红肿、隆起、疼痛。如果溃烂处经活检证实为鳞状细胞癌,该患者的处理哪些是正确的
护理贫血患者时,有哪些观察要点
肠结核的好发部位是
男,68岁。反复咳嗽、咳痰、气促41年,心悸、水肿5年,近1周来症状加重入院。查体:呼吸急促,双肺可闻及干湿啰音,P2亢进,三尖瓣区闻及3/6级收缩期杂音。肝右肋下4cm,压痛(+)。肝颈静脉回流征阳性,下肢水肿。此时首选的治疗是使用()
根据常见辨证论治的理论,燥邪伤肺咳嗽的治法是()。
某新建项目,建设期为3年,分年均衡进行贷款,第一年贷款800万元,第二年贷款1000万元,第三年贷款500万元,年利率为10%,建设期内只计息不支付,则该项目建设期贷款利息为()万元。
在企业销售物流的效率评价指标中,经济效率指的是()的比值。
奥运会时,有个帖子说:奏国歌时,西班牙队没有一个开口的,因而很不爱国。以此推论,乔丹领军的梦一队是最爱国的。他们领奖时,队员都身披美国国旗。然而真相是,西班牙国歌压根没歌词。美国国家队赞助商是锐步,而乔丹的赞助商是耐克,因发誓效忠耐克,他们便用国旗遮住锐步
Johnhadbeenworkinghard,______.
Ifthenationalpastimecouldbeintegrated,itseemedonlyamatteroftimebeforethenation’sschools,playgrounds,buses,andre
最新回复
(
0
)