[2003年] 设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存在ξ∈(0,3),使f’(ξ)=0.

admin2021-01-25  60

问题 [2003年]  设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存在ξ∈(0,3),使f’(ξ)=0.

选项

答案证一 因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M和最小值m,于是 m≤f(0)≤M,m≤f(1)≤M,m≤f(2)≤M, 故 [*] 由介值定理知,至少存在一点c∈[0,2],使 [*] 因为f(c)=1=f(3),且f(x)在[c,3]上连续,在(c,3)内可导,所以由罗尔定理知,必存在ξ∈(c,3)[*](0,3),使f’(ξ)=0. 证二 设在[0,2]上总有f(x)>1,令x=0,1,2,则f(0)+f(1)+f’(2)>1+1+1=3与已知条件f(0)+f(1)+f(2)=3相矛盾.故不可能在[0,2]上对所有x都有f(x)>1,即至 少存在一点x0∈[0,2],使f(x0)≤1. 同样可证在[0,2]上不可能对所有x,都有f(x)<1,即至少存在一点x1∈[0,2],使f(x1≥1.由于f(x)在[0,2]上连续,故必存在一点c∈[0,2],使f(c)=1.于是有f(c)=f(3)=1.又f(x)在[c,3]上连续,在(c,3)内可导,由罗尔定理知,必存在一点ξ∈(c,3)[*](0,3),使f’(ξ)=0.

解析
转载请注明原文地址:https://kaotiyun.com/show/xqx4777K
0

相关试题推荐
最新回复(0)