首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
商店销售某种季节性商品,每售出一件获利500元,季度末未售出的商品每件亏损100元,以X表示该季节此种商品的需求量,若X服从正态分布N(100,4),问: (1)进货量最少为多少时才能以超过95%的概率保证供应; (2)进货量为多少时商店获
商店销售某种季节性商品,每售出一件获利500元,季度末未售出的商品每件亏损100元,以X表示该季节此种商品的需求量,若X服从正态分布N(100,4),问: (1)进货量最少为多少时才能以超过95%的概率保证供应; (2)进货量为多少时商店获
admin
2018-09-20
74
问题
商店销售某种季节性商品,每售出一件获利500元,季度末未售出的商品每件亏损100元,以X表示该季节此种商品的需求量,若X服从正态分布N(100,4),问:
(1)进货量最少为多少时才能以超过95%的概率保证供应;
(2)进货量为多少时商店获利的期望值最大.
(ψ(1.65)=0.95,ψ(0.95)=0.83,其中ψ(x)为标准正态分布函数)
选项
答案
(1)设进货量为k(件),依题意k应使 P{X≤k}≥0.95,即[*]≥0.95=ψ(1.65), 故 [*] 即进货量最少为104(件)时才能以超过95%的概率保证供应. (2)设进货量为n(件),则商品获利 [*] 已知X的概率密度为f(x),故 EY=E[g(X,n)]=∫
-∞
+∞
g(x,n)f(x)dx =∫
-∞
n
(600x—100n)f(x)dx+∫
n
+∞
500nf(x)dx =∫
-∞
n
600xf(x)dx一100n∫
-∞
n
f(x)dx—∫
-∞
n
500nf(x)dx+∫
-∞
n
500nf(x)dx+∫
n
+∞
500nf(x)dx =600∫
-∞
n
xf(x)dx一600n∫
-∞
n
f(x)dx+500n∫
-∞
+∞
f(x)dx =600∫
-∞
n
xf(x)dx一600n∫
-∞
n
f(x)dx+500n. 记 g(a)=600∫
-∞
a
xf(x)dx-600a∫
-∞
a
f(x)dx+500a, 令 g’(a)=600af(a)一600∫
-∞
a
f(x)dx一600af(a)+500=0, 解得 [*] 所以进货量为102(件)时商店获利的期望值最大.
解析
转载请注明原文地址:https://kaotiyun.com/show/xtW4777K
0
考研数学三
相关试题推荐
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时|f(x)|≤M0,|f’’’(x)|≤M3,其中M0,M3为非负常数,求证f’’(x)在(0,+∞)上有界.
设随机变量X服从(0,1)上的均匀分布,求下列Yi(i=1,2,3,4)的数学期望和方差:(Ⅰ)Y2=eX;(Ⅱ)Y2=-2lnX;(Ⅲ)Y3=;(Ⅳ)Y42=X2.
设二维连续型随机变量(X,Y)的联合概率密度为(Ⅰ)求X与Y的相关系数;(Ⅱ)令Z=XY,求Z的数学期望与方差.
设A是m×n矩阵,B是n×lm矩阵,若m>n,证明:|AB|=0.
设η1=的三个解,求其通解.
设α,β为四维非零列向量,且α⊥β,令A=αβT,则A的线性无关特征向量个数为()
设(X,Y)服从二维正态分布,其边缘分布为X~N(1,1),y~N(2,4),X,Y的相关系数为ρXY=一0.5,且P(aX+bY≤1)=0.5,则().
设A,B为三阶矩阵,且AB=A一B,若λ1,λ2,λ3为A的三个不同的特征值,证明:存在可逆矩阵P,使得P一1AP,P一1BP同时为对角矩阵.
设总体X~N(μ,σ2),X1,X2,…,Xn是来自总体X的样本,令,求E(X1T).
从正态总体X,N(0,σ2)中抽取简单随机样本X1,X2,…,Xn,则可作为参数σ2的无偏估计量的是().
随机试题
当参数a为何值时,非齐次线性方程组有解?当它有解时,求出它的通解.
不直接参与维系蛋白质高级结构的化学键是
患者,女,56岁,高空坠落伤,目前处于昏迷状态。护士小刘为其做口腔护理时,正确的护理措施是
高程控制网的测量方法有()。
管道与机械设备连接前,应在自由状态下检验法兰的(),偏差应符合规定要求。
人身意外伤害保险的基本保障项目有()
由于按揭贷款的利率在降低,消费者在观望利率会低到什么程度,所以一月份出售的新房子数量大幅下降了,销售大幅下降的同时,所售新房子平均价格激增。下面哪项如果正确,最好地解释了新房子平均价格的激增?()
(2012年浙江.16)下列词语中,没有错别字的一项是()。
【61】【63】
EnglishEssayAsthebeginningofaseriesoflecturesonessaywriting,IwilldiscusswithyouabouthowtowriteagoodEngl
最新回复
(
0
)