首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为反对称矩阵,则 (1)若k是A的特征值,一k一定也是A的特征值. (2)如果它的一个特征向量η的特征值不为0,则ηTη=0. (3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
设A为反对称矩阵,则 (1)若k是A的特征值,一k一定也是A的特征值. (2)如果它的一个特征向量η的特征值不为0,则ηTη=0. (3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
admin
2018-11-20
44
问题
设A为反对称矩阵,则
(1)若k是A的特征值,一k一定也是A的特征值.
(2)如果它的一个特征向量η的特征值不为0,则η
T
η=0.
(3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
选项
答案
(1)若k是A的特征值,则k也是A
T
的特征值.而A
T
=一A,于是一k是A的特征值. (2)设η的特征值为λ,则Aη=λη. λη
T
η=η
T
Aη=(A
T
η)
T
η=(一Aη)
T
η=一λη
T
η. λ不为0,则η
T
η=0. (3)A为实反对称矩阵,则由上例知道,一A
2
=A
T
A的特征值都是非负实数,从而A
2
的特征值都是非正实数.设λ是A的特征值,则λ
2
是A
2
的特征值,因此λ
2
≤0,于是λ为0,或为纯虚数.
解析
转载请注明原文地址:https://kaotiyun.com/show/xwW4777K
0
考研数学三
相关试题推荐
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=一2,则行列式|一A1一2A2,2A2+3A3,一3A3+2A2|=________.
设二维非零向量α不是二阶方阵A的特征向量.证明α,Aα线性无关;
设的一个特征值为λ1=2,其对应的特征向量为ξ1=求常数a,b,c;
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.求矩阵A的全部特征值;
设有三个线性无关的特征向量,则a=________.
设A为n阶矩阵,且Ak=0,求(E一A)一1.
设A,B为n阶矩阵,且A2=A,B2=B,(A+B)2=A+B.证明:AB=0.
设求:|一2B|;
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=0,则().
随机试题
酸碱指示剂一般是有机弱酸或有机弱碱,它们在不同pH值的溶液中呈现不同颜-色是因为()。
分层注水井全井注水量不应超过配注水量的±20%。()
在西方美学史上,提出“美是道德的象征”这一命题的美学家是()
成人常规心脏摄影,焦一片距离应为
“十二五”时期,要把符合落户条件的农业转移人口逐步转为城镇居民作为推进城镇化的()任务。
阶级矛盾和统治阶级内部矛盾的不可调和性,是警察产生的政治条件。( )
1.2013年6月22日,在柬埔寨首都金边召开的第37届世界遗产委员会会议一致审议通过中国的红河哈尼梯田文化景观列入《世界遗产名录》。红河哈尼梯田文化景观成为中国第31项世界文化遗产,中国世界遗产总数达到45项。汉文字史料记载就有1300多年以上
简述抵押权的实现。
信息系统项目完成后,最终产品或项目成果应置于(332)内,当需要在此基础上进行后续开发时,应将其转移到(333)后进行。(333)
HowtoReadEffectivelyManystudentstendtoreadbookswithoutanypurpose.Theyoftenreadabookslowlyandingreatdeta
最新回复
(
0
)