首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为反对称矩阵,则 (1)若k是A的特征值,一k一定也是A的特征值. (2)如果它的一个特征向量η的特征值不为0,则ηTη=0. (3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
设A为反对称矩阵,则 (1)若k是A的特征值,一k一定也是A的特征值. (2)如果它的一个特征向量η的特征值不为0,则ηTη=0. (3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
admin
2018-11-20
47
问题
设A为反对称矩阵,则
(1)若k是A的特征值,一k一定也是A的特征值.
(2)如果它的一个特征向量η的特征值不为0,则η
T
η=0.
(3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
选项
答案
(1)若k是A的特征值,则k也是A
T
的特征值.而A
T
=一A,于是一k是A的特征值. (2)设η的特征值为λ,则Aη=λη. λη
T
η=η
T
Aη=(A
T
η)
T
η=(一Aη)
T
η=一λη
T
η. λ不为0,则η
T
η=0. (3)A为实反对称矩阵,则由上例知道,一A
2
=A
T
A的特征值都是非负实数,从而A
2
的特征值都是非正实数.设λ是A的特征值,则λ
2
是A
2
的特征值,因此λ
2
≤0,于是λ为0,或为纯虚数.
解析
转载请注明原文地址:https://kaotiyun.com/show/xwW4777K
0
考研数学三
相关试题推荐
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E一ααT,B=E+ααT,且B为A的逆矩阵,则a=________.
设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a一2,a一1,则a=________.
设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为().
设方程组AX=β有解但不唯一,(1)求a;(2)求可逆矩阵P,使得P一1AP为对角阵;(3)求正交阵Q,使得QTAQ为对角阵.
设相似于对角阵,求:a及可逆阵P,使得P一1AP=A,其中A为对角阵;
设n阶矩阵A满足A2+2A一3E=0.求:(A+2E)一1;
设四阶矩阵B满足BA一1=2AB+E,且A=,求矩阵B.
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=0,则().
设为正定矩阵,令P=求PTCP;
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=二次型g(X)=XTAX是否与f(x1,x2,…,xn)合同?
随机试题
骨肉瘤的临床表现包括
A.3.9~6.11mmol/LB.6.11~7.0mmol/LC.<2.8mmol/LD.7.8~11.1mmd/LE.11.1~14.0mmol/L低血糖症时的血糖浓度为
()能够解决冬季北方门窗结冰、夏季南方室内保凉难题。
UCITS新增的投资品种不包括()。
组织产权制度主要是指()。
衡量礼会进步根本的、最高标准是()。
最近,为防止艾滋病病毒进一步传播,尼日利亚政府大力鼓励艾滋病患者之间相互通婚。但是,联合国艾滋病规划署(UNAIDS)对“艾滋病婚姻”的做法持有疑虑,认为此举未必能阻止艾滋病病毒传播。虽然目前尚无证据证明“艾滋病婚姻”有助预防艾滋病病毒蔓延,但是对于很多“
下列有关具体法律制度的表述正确的是()。
A、 B、 C、 A本题属于辨物题,关键词是flowers(花朵)。材料中的其余信息都只是干扰信息。
TipsforTravelingAloneWhenitcomestotraveling,sometimestakingajourneyalonecanbegreat.Travelingaloneallowsf
最新回复
(
0
)