首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为反对称矩阵,则 (1)若k是A的特征值,一k一定也是A的特征值. (2)如果它的一个特征向量η的特征值不为0,则ηTη=0. (3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
设A为反对称矩阵,则 (1)若k是A的特征值,一k一定也是A的特征值. (2)如果它的一个特征向量η的特征值不为0,则ηTη=0. (3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
admin
2018-11-20
42
问题
设A为反对称矩阵,则
(1)若k是A的特征值,一k一定也是A的特征值.
(2)如果它的一个特征向量η的特征值不为0,则η
T
η=0.
(3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
选项
答案
(1)若k是A的特征值,则k也是A
T
的特征值.而A
T
=一A,于是一k是A的特征值. (2)设η的特征值为λ,则Aη=λη. λη
T
η=η
T
Aη=(A
T
η)
T
η=(一Aη)
T
η=一λη
T
η. λ不为0,则η
T
η=0. (3)A为实反对称矩阵,则由上例知道,一A
2
=A
T
A的特征值都是非负实数,从而A
2
的特征值都是非正实数.设λ是A的特征值,则λ
2
是A
2
的特征值,因此λ
2
≤0,于是λ为0,或为纯虚数.
解析
转载请注明原文地址:https://kaotiyun.com/show/xwW4777K
0
考研数学三
相关试题推荐
设二维非零向量α不是二阶方阵A的特征向量.若A2a+Aα一6α=0,求A的特征值,讨论A可否对角化;
设的一个特征值为λ1=2,其对应的特征向量为ξ1=判断A是否可对角化,若可对角化,求可逆矩阵P,使得P一1AP为财角矩阵.若不可对角化,说明理由.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A一1的特征值并判断A一1是否可对角化.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.求|A*+2E|.
设有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设,求B一1.
设A,B满足A*BA=2BA一8E,且A=,求B.
设求:|一2B|;
设A是4×3阶矩阵且r(A)=2,B=,则r(AB)=________.
n阶矩阵A经过若干次初等变换化为矩阵B,则().
随机试题
谈判的根本矛盾是()
我国规定的传染病管理报告制度中下列哪项是不正确的
混合牙列时期是
某市质监局发现一公司生产劣质产品,查封了公司的生产厂房和设备,之后决定没收全部劣质产品、罚款10万元。该公司逾期不缴纳罚款。下列哪一选项是错误的?
封闭式基金的固定存续期是()。
企业在对质量检查员的需求量进行预测时,应采用的方法是()。
下列哪些村可以建立村民代表会议?()
内容重要并紧急需要打破常规优先传递处理的文件,叫作()。
Intoday’sworld,peace,developmentandcooperationisthetrendofthetimes,theinternationalenvironmentisconducivetope
在Access数据库中已经建立"tStudent"表,若使"姓名"字段在数据表视图中显示时不能移动位置,应使用的方法是
最新回复
(
0
)