首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为反对称矩阵,则 (1)若k是A的特征值,一k一定也是A的特征值. (2)如果它的一个特征向量η的特征值不为0,则ηTη=0. (3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
设A为反对称矩阵,则 (1)若k是A的特征值,一k一定也是A的特征值. (2)如果它的一个特征向量η的特征值不为0,则ηTη=0. (3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
admin
2018-11-20
74
问题
设A为反对称矩阵,则
(1)若k是A的特征值,一k一定也是A的特征值.
(2)如果它的一个特征向量η的特征值不为0,则η
T
η=0.
(3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
选项
答案
(1)若k是A的特征值,则k也是A
T
的特征值.而A
T
=一A,于是一k是A的特征值. (2)设η的特征值为λ,则Aη=λη. λη
T
η=η
T
Aη=(A
T
η)
T
η=(一Aη)
T
η=一λη
T
η. λ不为0,则η
T
η=0. (3)A为实反对称矩阵,则由上例知道,一A
2
=A
T
A的特征值都是非负实数,从而A
2
的特征值都是非正实数.设λ是A的特征值,则λ
2
是A
2
的特征值,因此λ
2
≤0,于是λ为0,或为纯虚数.
解析
转载请注明原文地址:https://kaotiyun.com/show/xwW4777K
0
考研数学三
相关试题推荐
设n阶矩阵A满足A2+A=3E,则(A一3E)一1=________.
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=一2,则行列式|一A1一2A2,2A2+3A3,一3A3+2A2|=________.
设二维非零向量α不是二阶方阵A的特征向量.证明α,Aα线性无关;
设矩阵求可逆矩阵P,使得PTA2P为对角矩阵.
设有三个线性无关的特征向量,则a=________.
设n阶矩阵A满足A2+2A一3E=0.求:(A+4E)一1.
设AX=A+2X,其中A=,求X.
二次型f(x1,x2,x3)=x12+ax22+x32一4x1x2一8x1x3一4x2x3经过正交变换化为标准形5y12+by22一4y32,求:正交变换的矩阵Q.
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;
随机试题
颈椎病发生的最基本原因是
膀胱刺激症状是
实践中常采用经营收益间接估算企业未来的经营净现金流量。其计算公式是()。
由于建筑材料价格上涨导致承包人索赔,根据计价方式的不同,对于该索赔不予支持的是()。
下列对股利的分配处理正确的是()。
期货从业人员对在执业过程中所获得的未公开的重要信息应当履行保密义务,不得泄露、传递给他人,但下列()情况除外。
在其他条件不变动的情况下,()会导致个人劳动力供给时间增加。
在面试之前,已经有一个固定的框架或问题清单的面试方法是()。
善于迅速地辨明是非、合理地采取决定和执行决定的品质是意志的()。
Asshewalkedroundthehugedepartmentstore,EdithreflectedhowdifficultitwastochooseasuitableChristmaspresentforh
最新回复
(
0
)