首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性无关的函数y1,y2与y3均为二阶非齐次线性微分方程的解,C1和C2是任意常数,则该非齐次线性方程的通解是( )
设线性无关的函数y1,y2与y3均为二阶非齐次线性微分方程的解,C1和C2是任意常数,则该非齐次线性方程的通解是( )
admin
2020-04-30
19
问题
设线性无关的函数y
1
,y
2
与y
3
均为二阶非齐次线性微分方程的解,C
1
和C
2
是任意常数,则该非齐次线性方程的通解是( )
选项
A、C
1
y
1
+C
2
y
2
+y
3
B、C
1
y
1
+C
2
y
2
-(C
1
+C
2
)y
3
C、C
1
y
1
+C
2
y
2
+(1-C
1
-C
2
)y
3
D、C
1
y
1
+C
2
y
2
-(1-C
1
-C
2
)y
3
答案
C
解析
本题考查线性微分方程解的结构.线性微分方程的解主要是满足“叠加原理”.非齐次线性方程的通解等于其对应的齐次方程的通解再加上本身的一个特解.
如果设该二阶非齐次线性微分方程的形式为
y“+p(x)y‘+q(x)y=f(x).
由题意,y
1
,y
2
,y
3
均为其线性无关的解,则
y=C
1
y
1
+C
2
y
2
+y
3
是y“+p(x)y‘+q(x)y=3f(x)的解,故A选项不正确. y=C
1
y
1
+C
2
y
2
-(C
1
+C
2
)y
3
=C
1
(y
1
-y
3
)+C
2
(y
2
-y
3
)是方程对应的齐次方程的解,故B选项不正确. y=C
1
y
1
+C
2
y
2
+(1-C
1
-C
2
)y
3
=C
1
(y
1
-y
3
)+C
2
(y
2
-y
3
)+y
3
,
其中C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)为齐次方程的通解,y
3
为原方程的一个特解,故C选项正确.
y=C
1
y
1
+C
2
y
2
-(1-C
1
-C
2
)y
3
=C
1
(y
1
+y
3
)+C
2
(y
2
+y
3
)-y
3
是y“+p(x)y‘+q(x)y=(2C
1
+2C
2
-1)f(x)的解,
综上讨论,应选C.
转载请注明原文地址:https://kaotiyun.com/show/yIv4777K
0
考研数学一
相关试题推荐
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是
(98年)设A、B是两个随机事件,且0<P(A)<1,P(B)>0,P(B|A)=,则必有
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则().
n阶实对称矩阵A正定的充分必要条件是().
r(A)=2,则()是A*X=0的基础解系.
若3维列向量αβ满越αTβ=2,其αT为α为转置,则矩阵βαT的非零特征值为________.
设A是4×3阶矩阵且r(A)=2,B=,则r(AB)=________.
已知A,B,C都是行列式值为2的3阶矩阵,则D==________.
设A=,B=P-1AP,其中P为3阶可逆矩阵,则B2004一2A2=________.
若3维列向量α,β满足αTβ=2,其中αT为α的转置,则矩阵βαT的非零特征值为________。
随机试题
二极管的直流电阻R与外加直流电压U、流过二极管电流I的关系是()。
在中国,药用筛的标准有两种:一种是(),另一种是()。“目”的含义是()。
根据《涉台民事诉讼文书送达的若干规定》的规定,人民法院向住所地在台湾地区的当事人送达民事诉讼文书,可以采用下列哪些方式?()
划分连续变量的组限时,相邻两组的组限( )。
每个员工都有其典型的工作满意度水平,是()。
在Word中要删除整个表格,先选中表格中的所有行,然后按Del键即可。
儿童学科学的内在动机和原动力是()。
“黑箱”,是控制论中的概念,意为在认识上主体对其内部情况全然不知的对象。“科技黑箱”的含义与此有所不同,它是一种特殊的存贮知识、运行知识的设施或过程,使用者如同面对黑箱,不必打开,也不必理解和掌握其中的知识,只需按规则操作即可得到预期的结果。例如电脑、手机
2010年山东省经济实现平稳较快发展。初步核算,全省实现生产总值(GDP)39416.2亿元,按可比价格计算,比上年增长12.5%。其中,第一产业增加值增长3.6%;第二产业增加值增长13.4%;第三产业增加值增长13.0%。产业结构调整取得明显成效,三次
ThewordforTheDaVinciCodeisarareinvertiblepalindrome.Rotated180degreesonahorizontalaxissothatitisupsidedo
最新回复
(
0
)