首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P-1AP; ③AT; ④ α肯定是其特征向量的矩阵个数为( )
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P-1AP; ③AT; ④ α肯定是其特征向量的矩阵个数为( )
admin
2017-01-14
82
问题
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中
①A
2
; ②P
-1
AP; ③A
T
; ④
α肯定是其特征向量的矩阵个数为( )
选项
A、1。
B、2。
C、3。
D、4。
答案
B
解析
由Aα=λα,α≠0,有A
2
α=A(λα)=λAα=λ
2
α,即α必是A
2
属于特征值λ
2
的特征向量。
又
知α必是矩阵
属于特征值
的特征向量。
关于②和③则不一定成立。这是因为
(P
-1
AP)(P
-1
α)=P
-1
Aα=λP
-1
α,
按定义,矩阵P
-1
AP的特征向量是P
-1
α。因为P
-1
α与α不一定共线,因此α不一定是P
-1
AP的特征向量,即相似矩阵的特征向量是不一样的。
线性方程组(λE-A)x=0与(λE-A
T
)x=0不一定同解,所以α不一定是第二个方程组的解,即α不一定是A
T
的特征向量。所以应选B。
转载请注明原文地址:https://kaotiyun.com/show/yJu4777K
0
考研数学一
相关试题推荐
[*]
[*]
在半径为r的球内嵌入一圆柱,试将圆柱的体积表示为其高的函数,并确定此函数的定义域。
设曲线方程为y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ε(ε>0)所谓平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ε),求满足的a;(2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,并求出该面积。
设y=ex,求dy和d2y:(1)x为自变量;(2)x=x(t),t为自变量,x(t)二阶可导.
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
设n阶矩阵A的元素全为1,则A的n个特征值是________.
设x元线性方程组Ax=b,其中,证明行列式丨A丨=(n+1)an.
幂级数x2n-1的收敛半径R=___________.
设Г:x=x(t),y=y(t)(α<t<β)是区域D内的光滑曲线,即x(t),y(t),(α,β)有连续的导数且xˊ2(t)+yˊ2(t)≠0,f(x,y)在D内有连续的偏导数,若Po∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点Po沿Γ的切线
随机试题
A.血肌酐
在我国,著作权质权登记的信息由下列选项中()公布。
男,30岁,2周前出现干咳,伴有午后低热、盗汗、左胸痛,近几日自觉左胸痛好转,但出现气促,夜间喜左侧卧位。查体:气管向右侧移位,左侧胸廓较右侧稍饱满,左侧呼吸运动减弱,左侧触觉语颤减弱,听诊左侧呼吸音消失,双肺未闻及干、湿性啰音。该患者的症状、体征提示
城市进化理论认为,从工业化社会到后工业化社会,城市发展具有相似的进化过程,可以分为()。
下列各项中,能够引起应收账款账面价值发生变动的是()。
公司要搞一场大型产品推介会,要你制订一个方案。对此,你会优先考虑的是()。
研究人员发现在大脑中存在着不同种类和巨大数量的高维几何结构,由紧密连接的神经元团块和它们之间的空白区域(空洞)组成。这些团块或空洞似乎对大脑功能至关重要,当研究人员给虚拟大脑组织施加刺激时,他们发现神经元以一种高度有组织性的方式对刺激作出了反应。这意味着我
自治州的人民代表大会有权制定()。
《中华人民共和国合同法》第101条规定:“有下列情形之一,难以履行债务的,债务人可以将标的物提存:(一)债权人无正当理由拒绝受领;(二)债权人下落不明;(三)债权人死亡未确定继承人或者丧失民事行为能力未确定监护人;(
A、Takethesafetyofhisparents-in-lawintoaccount.B、Askhisparents-in-lawtomakethedecision.C、Invitehisparents-in-law
最新回复
(
0
)