首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 设有三元方程xy一zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( ).
[2005年] 设有三元方程xy一zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( ).
admin
2019-04-05
56
问题
[2005年] 设有三元方程xy一zlny+e
xz
=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( ).
选项
A、只能确定一个具有连续偏导数的隐函数z=z(x,y)
B、可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)
C、可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)
D、可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
答案
D
解析
利用定理1.4.2.2确定正确选项.
仅(D)入选.F(x,y,z)=0,其中F(x,y,z)=xy—zlny+e
xz
一1.显然,F在点(0,1,1)附近对x,y,z均有连续偏导数,且F(0,1,1)=0.
相应的三个偏导数
F′g∣
(0,1,1)
=(一lny+xe
xz
)∣
(0,1,1)
=0,
F′y∣
(0,1,1)
=(x—z/y)∣
(0,1,1)
=一1≠0, F′x∣
(0,1,1)
=(y+ze
xz
)∣
(0,1,1)
=2≠0.
由定理1.4.2.2(隐函数存在定理)知,在点(0,1,1)的一个邻域内,由方程F(x,y,z)=xy—zlny+e
xz
一l=0可以确定两个具有连续偏导数的隐函数y=y(x,z),x=x(y,z).
转载请注明原文地址:https://kaotiyun.com/show/yPV4777K
0
考研数学二
相关试题推荐
用变量代换x=cost(0<t<π)化简微分方程(1一x2)y’’一xy’+y=0,并求其满足y|x=0=1,y’|x=0=2的特解.
求下列方程的通解:(Ⅰ)y"-3y’=2-6x;(Ⅱ)y"+y=cosxcos2x.
(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,J6『可唯一表示为α1,α2,α3,α4的线性组合?
设其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1。a、b为何值时,g(x)在x=0处连续。
已知I(α)=求积分∫-32I(α)dα.
某种飞机在机场降落时,为了减少滑行距离,在触地瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来。现有一质量为9000kg的飞机,着陆时的水平速度为700km/h。经测试,减速伞打开后,飞机所受的阻力与飞机的速度成正比(比例系数为k=6.0×1
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件;
(2008年试题,二)曲线sin(xy)+ln(y一x)=x在点(0,1)处的切线方程为________.
[2002年]设0<a<b,证明不等式.
(2002年)已知矩阵A=[α1α2α3α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Aχ=β的通解.
随机试题
股份合作制经济()
Anyonewhohasriddenonarailroadtrainknowshowrapidlyanothertrain【C1】______bywhenitistravellinginthe【C2】______dire
男,30岁,阑尾炎术后发生肠梗阻,经治疗1周不缓解,首选的营养给予方式是
某甲与某乙有仇,欲寻机报复。一日某甲知某乙一人在家,便携匕首前往。途中遇联防人员巡逻,某甲深感害怕。折返家中。某甲的行为属于( )。
燃气管道穿越()下面时,其外应加套管。
银行业金融机构要按照“审贷分离、分级审批”的原则对信贷资金的投向、金额、期限、利率等贷款内容和条件进行最终决策,逐级签署审批意见。()
市场营销观念以()需求为中心。
(2008年真题)若函数f(x)可导,且f(0)=f’(0)==[]。
如果下岗职工实现了普遍的再就业,那么社会保障的压力就会减轻。只有下岗职工都获得了新的技能或者经济转型提供了广泛的就业空间,下岗职工才能实现普遍的再就业。事实是社会保障的压力越来越重。根据以上陈述,判断下列命题哪项一定正确:I.下岗职工没
Manytheoriesconcerningthecausesofjuveniledelinquency(crimescommittedbyyoungpeople)focuseitherontheindividualor
最新回复
(
0
)