首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,…,αn)是s×n阶矩阵,b是s维非零列向量,以下选项中不能作为Ax=b有解的充要条件是( )。
设A=(α1,α2,…,αn)是s×n阶矩阵,b是s维非零列向量,以下选项中不能作为Ax=b有解的充要条件是( )。
admin
2022-03-14
41
问题
设A=(α
1
,α
2
,…,α
n
)是s×n阶矩阵,b是s维非零列向量,以下选项中不能作为Ax=b有解的充要条件是( )。
选项
A、b可以由向量组α
1
,α
2
,…,α
n
线性表示
B、向量组α
1
,α
2
,…,α
n
与向量组α
1
,α
2
,…,α
n
,b等价
C、矩阵方程AX=(A,b)有解
D、向量组α
1
,α
2
,…,α
n
,b线性相关
答案
D
解析
①Ax=b有解→存在不全为零的常数k
1
,k
2
,…,k
n
,使得b=k
1
α
1
+k
2
α
2
+…+k
n
α
n
,即b可以由向量组α
1
,α
2
,…,α
n
线性表示。
②Ax=b有解→b可以由向量组α
1
,α
2
,…,α
n
线性表示→向量组α
1
,α
2
,…,α
n
,b可以由向量组α
1
,α
2
,…,α
n
线性表示。
又因为向量组α
1
,α
2
,…,α
n
可以由向量组α
1
,α
2
,…,α
n
,b线性表示,所以Ax=b有解→向量组α
1
,α
2
,…,α
n
与向量组α
1
,α
2
,…,α
n
,b等价。
③若Ax=b有解,则可设Aξ=b,于是A(E,ξ)=(A,b),即AX=(A,b)有解,反过来,若AX=(A,b)有解,可设AB=(A,b),于是取ξ为B的最后一列,这Aξ=b,即Ax=b有解。
④由①可知,当线性方程组Ax=b有解时,向量组α
1
,α
2
,…,α
n
,b线性相关,但反之未必。例如,取s=n=2,A=(α
1
,α
2
)=
,则向量组α
1
,α
2
,b线性相关,但Ax=b无解。
综上可知,应选D。
转载请注明原文地址:https://kaotiyun.com/show/ybR4777K
0
考研数学三
相关试题推荐
设A为n(n≥2)阶可逆矩阵,变换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则()
设{an}为正项数列,下列选项正确的是
设A,B均为n阶可逆矩阵,且(A+B)2=E,则(E+BA—1)—1=()
设函数讨论函数f(x)的间断点,其结论为
设a是常数,则级数
已知随机变量X与Y的相关系数大于零,则()
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为
设f(x)在[0.1]上连续可导,f'(1)=0,证明:存在ξ∈[0,1],使得f'(ξ)=4.
设X1,X2,X3,…,Xn是来自正态总体N(μ,σ2)的简单随机变量,是样本均值,记=.则___________.
求不定积分
随机试题
案例瓦斯爆炸事故【案情】某市一煤矿电工张某下井安装电煤钻,在井下接好电缆、干式变压器,安装好电煤钻后,由于停电没有试钻便出了矿井。当天下午,中班下井生产,张某将一卷胶布和一把钢丝钳交给安全员易某,对易某说:“电煤钻安装好了,因停电没有试钻,如果反转
以下选项中正确的语句组是()。
未来学家尼葛洛庞蒂说:“预测未来的最好办法就是把它创造出来。”从认识与实践的关系看,这句话对我们的启示是()
与肿瘤有密切关系的行为是
喷射混凝土应紧跟开挖工作面,应分段、分片、分层,()顺序进行。
企业以信用证存款购买材料时,应()。
下列关于权证清算交收的说法中,正确的有()
把下面的六个图形分成两类,使每一类图形都有各自的共同特征或规律。分类正确的一项是:
设Ω={(x,y,z)|x2+y2+z2≤1},则
美国视频电子标准协会定义一个VGA扩展集,将显示方式标准化,这就是著名的( )显示方式。
最新回复
(
0
)