首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,…,αn)是s×n阶矩阵,b是s维非零列向量,以下选项中不能作为Ax=b有解的充要条件是( )。
设A=(α1,α2,…,αn)是s×n阶矩阵,b是s维非零列向量,以下选项中不能作为Ax=b有解的充要条件是( )。
admin
2022-03-14
82
问题
设A=(α
1
,α
2
,…,α
n
)是s×n阶矩阵,b是s维非零列向量,以下选项中不能作为Ax=b有解的充要条件是( )。
选项
A、b可以由向量组α
1
,α
2
,…,α
n
线性表示
B、向量组α
1
,α
2
,…,α
n
与向量组α
1
,α
2
,…,α
n
,b等价
C、矩阵方程AX=(A,b)有解
D、向量组α
1
,α
2
,…,α
n
,b线性相关
答案
D
解析
①Ax=b有解→存在不全为零的常数k
1
,k
2
,…,k
n
,使得b=k
1
α
1
+k
2
α
2
+…+k
n
α
n
,即b可以由向量组α
1
,α
2
,…,α
n
线性表示。
②Ax=b有解→b可以由向量组α
1
,α
2
,…,α
n
线性表示→向量组α
1
,α
2
,…,α
n
,b可以由向量组α
1
,α
2
,…,α
n
线性表示。
又因为向量组α
1
,α
2
,…,α
n
可以由向量组α
1
,α
2
,…,α
n
,b线性表示,所以Ax=b有解→向量组α
1
,α
2
,…,α
n
与向量组α
1
,α
2
,…,α
n
,b等价。
③若Ax=b有解,则可设Aξ=b,于是A(E,ξ)=(A,b),即AX=(A,b)有解,反过来,若AX=(A,b)有解,可设AB=(A,b),于是取ξ为B的最后一列,这Aξ=b,即Ax=b有解。
④由①可知,当线性方程组Ax=b有解时,向量组α
1
,α
2
,…,α
n
,b线性相关,但反之未必。例如,取s=n=2,A=(α
1
,α
2
)=
,则向量组α
1
,α
2
,b线性相关,但Ax=b无解。
综上可知,应选D。
转载请注明原文地址:https://kaotiyun.com/show/ybR4777K
0
考研数学三
相关试题推荐
函数y=f(x)在(一∞,+∞)连续,其二阶导函数的图形如图2—2所示,则y=f(x)的拐点的个数是()
设A,B均为n阶可逆矩阵,且(A+B)2=E,则(E+BA—1)—1=()
设随机变量X服从指数分布,则随机变量Y=min{X,2}的分布函数()
设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是().
设随机变量(i=1,2)且满足P{X1X2=0}=1,则P{X1=X2}等于()
设总体X的概率密度为其中θ是未知参数(0<θ<1),X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值χ1,χ2,…,χn中小于1的个数.求(Ⅰ)θ的矩估计;(Ⅱ)θ的最大似然估计.
下列广义积分收敛的是()
为了研究施肥和不施肥对某种农作物产量的影响,独立地选了十三个小区在其他条件相同的情况下进行对比试验,得收获量如下表:设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.2
设常数a>0,双纽线(x2+y2)2=a2(x2一y2)围成的平面区域(如图)记为D,则二重积分(x2+y2)dσ=___________.
随机试题
患者,男,42岁。每日大量饮酒多年,近期觉双侧髋关节疼痛,并放射痛。影像学首先应做哪些检查
健康成人社区获得性肺炎最常见的病原体是
图示矩形截面杆AB,A端固定,B端自由。B端右下角处承受与轴线平行的集中力F,杆的最大正应力是:
房间中门的最小宽度,是由人体尺寸、通过人流数及家具设备的大小决定的。门的最小宽度一般为()mm,常用于住宅中的厕所、浴室。
通风和空气调节系统的管道布置,竖向不宜超过()层。
在汇付业务中,通常有()关系人。
下列教学组织形式中,有利于高效率、大面积培养学生的是()。
placeofhistoricalinterest
______isaprocessofcombiningtwoormorewordsintoonelexicalunit.
A、Takingapictureofthewoman.B、Adjustingtheflash.C、Figuringoutthequalityofthecamera.D、Checkingthelight.C行动计划题。男
最新回复
(
0
)