首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,…,αn)是s×n阶矩阵,b是s维非零列向量,以下选项中不能作为Ax=b有解的充要条件是( )。
设A=(α1,α2,…,αn)是s×n阶矩阵,b是s维非零列向量,以下选项中不能作为Ax=b有解的充要条件是( )。
admin
2022-03-14
40
问题
设A=(α
1
,α
2
,…,α
n
)是s×n阶矩阵,b是s维非零列向量,以下选项中不能作为Ax=b有解的充要条件是( )。
选项
A、b可以由向量组α
1
,α
2
,…,α
n
线性表示
B、向量组α
1
,α
2
,…,α
n
与向量组α
1
,α
2
,…,α
n
,b等价
C、矩阵方程AX=(A,b)有解
D、向量组α
1
,α
2
,…,α
n
,b线性相关
答案
D
解析
①Ax=b有解→存在不全为零的常数k
1
,k
2
,…,k
n
,使得b=k
1
α
1
+k
2
α
2
+…+k
n
α
n
,即b可以由向量组α
1
,α
2
,…,α
n
线性表示。
②Ax=b有解→b可以由向量组α
1
,α
2
,…,α
n
线性表示→向量组α
1
,α
2
,…,α
n
,b可以由向量组α
1
,α
2
,…,α
n
线性表示。
又因为向量组α
1
,α
2
,…,α
n
可以由向量组α
1
,α
2
,…,α
n
,b线性表示,所以Ax=b有解→向量组α
1
,α
2
,…,α
n
与向量组α
1
,α
2
,…,α
n
,b等价。
③若Ax=b有解,则可设Aξ=b,于是A(E,ξ)=(A,b),即AX=(A,b)有解,反过来,若AX=(A,b)有解,可设AB=(A,b),于是取ξ为B的最后一列,这Aξ=b,即Ax=b有解。
④由①可知,当线性方程组Ax=b有解时,向量组α
1
,α
2
,…,α
n
,b线性相关,但反之未必。例如,取s=n=2,A=(α
1
,α
2
)=
,则向量组α
1
,α
2
,b线性相关,但Ax=b无解。
综上可知,应选D。
转载请注明原文地址:https://kaotiyun.com/show/ybR4777K
0
考研数学三
相关试题推荐
设函数f(x)在|x|<δ内有定义且|f(x)|≤x2,则f(x)在x=0处().
设A为n(n≥2)阶可逆矩阵,变换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则()
设A是m×s阶矩阵,B为5×n阶矩阵,则方程组BX=0与ABX=0同解的充分条件是().
设A=E—2ξξT,其中ξ=(x1,x2,…,xn)T,且有ξTξ=1。则①A是对称矩阵;②A2是单位矩阵;③A是正交矩阵;④A是可逆矩阵。上述结论中,正确的个数是()
设x→a时f(x)与g(x)分别是x一a的n阶与m阶无穷小,则下列命题中,正确的个数是()①f(x)g(x)是x一a的n+m阶无穷小。②若n>m,则是x一a的n—m阶无穷小。③若n≤m,则f(x)+g(x)是x一a的n阶无穷小。
设随机变量(X,Y)的概率密度f(x,y)满足f(x,y)=f(一x,y),且ρXY存在,则ρXY=()
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则
设x2+y2≤2ay(a>0),则f(x,y)dxdy在极坐标下的累次积分为().
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xixj.记X=(x1,x2,…,xn)T,把f(x1,x2,…xn)写成矩阵形式,并证明二次型f(X
求不定积分
随机试题
甲公司正在考虑调整资本结构,有关资料如下:(1)公司目前债务的账面价值1000万元,利息率为5%,债务的市场价值与账面价值相同;所有者权益账面金额4000万元(与市价相同);每年的息税前利润为500万元。该公司的所得税税率为20%。(2)为了提高企
社会工作者小王拟运用“行为契约法”帮助初一学生养成良好的学习及生活习惯。在服务过程中,小王首先应该()。
A.祛风止痉,燥湿化痰,解毒散结B.息风止痉,解毒散结,通络止痛C.息风止痉,解毒散结,祛风止痛D.息风止痉,平肝潜阳,祛风除痹蜈蚣的功效是
A.3500~4000cGyB.4500~5000cGyC.5500~6000cGyD.6500~7000cGyE.7000~7600cGy膀胱耐受剂量
函数y=(5-x)号的极值可疑点的个数是:
关于涵管处的填筑方法,采用涵管两侧对称水平分层填筑,层铺厚度以()cm为宜。
中药材
指令流水线中,不同的指令在指令流水的不同功能段中可以()。
“材料控制,测量和下料,机器设备运转”等,应属于哪种职能范围内的业务活动过程?
在考生文件夹下HUN文件夹中建立一个新文件夹CALCUT。
最新回复
(
0
)