首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,+∞)上二阶可导,f(a)<0,f’(a)=0,且f"(x)≥k(k>0),则f(x)在(a,+∞)内的零点个数为( ).
设f(x)在[a,+∞)上二阶可导,f(a)<0,f’(a)=0,且f"(x)≥k(k>0),则f(x)在(a,+∞)内的零点个数为( ).
admin
2018-01-12
55
问题
设f(x)在[a,+∞)上二阶可导,f(a)<0,f’(a)=0,且f"(x)≥k(k>0),则f(x)在(a,+∞)内的零点个数为( ).
选项
A、0个
B、1个
C、2个
D、3个
答案
B
解析
因为f’(a)=0,且f"(x)≥k(k>0),所以f(x)=f(a)+f’(a)(x一a)+
=+∞,再由f(a)<0得f(x)在(a,+∞)内至少有一个零点.又因为f’(a)=0,且f"(x)≥k(k>0),所以f’(x)>0(x>a),即f(x)在[a,+∞)单调增加,所以零点是唯一的,选(B).
转载请注明原文地址:https://kaotiyun.com/show/ygr4777K
0
考研数学一
相关试题推荐
设函数u(x,y),v(x,y)在D:x2+y2≤1上一阶连续可偏导,又
设空间曲线C由立体0≤x≤1,0≤y≤1,0≤z≤1的表面与平面x+y+z=所截而成,计算。
设f(x)二阶连续可导且f(0)=f’(0)=0,f"(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求.
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,an为常数,且对一切x有|f(x)|≤|ex一1|.证明:|a1+2a2+…+nan|≤1.
设X和Y相互独立都服从0—1分布:P{X=1)=P{Y=1)=0.6.试证明:U=X+Y,V=X—Y不相关,但是不独立.
对于任意二事件A1,A2,考虑二随机变量试证明:随机变量X1和X2独立的充分必要条件是事件A1和A2相互独立.
设有方程y’+P(x)y=x2,其中试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
已知α=[1,k,1]T是A-1的特征向量,其中求k及a所对应的特征值.
设函数z=f(x,y)在点(0,0)处连续,且
随机试题
铸造金属全冠颈部肩台的宽度为( )
《江城晚报》记者张某在某报上发表一篇评论性文章,文中谈到:“江城文坛中,有的作家剽窃别人的作品当作自己的作品出版,有的作家昧着良心沦为有钱人的‘枪手’,文化素质和道德水平都有待大幅度地提高。”该报在江城所辖的甲、乙、丙、丁四个区发行。该市的作家陈某和李某认
各种账务处理程序之间的主要区别在于登记总账的依据和方法不同。()
教育历史上的“儿童中心论”是学生观的一种典型代表。()
犯罪嫌疑人陈某涉嫌诈骗被公安机关刑事拘留。下列信息中,不能向被害人或其家属公开的是:
作家萧伯纳说“人生有两大悲剧,一是没得到你心爱的东两,另一是得到了你心爱的东西”;学者周国平则说“人生有两大快乐,一是没有得到你心爱的东西,于是你可以去寻求和创造,另一是得到了你心爱的东西,于是你可以去品味和体验”。从哲学角度看,两个观点存在差异的主要原
国人对内需似乎还缺乏真正深刻的认识,往往是遇到困难了,才想起了扩大内需,仅仅把内需当成是GDP增长的一个工具。1997年亚洲金融危机发生之后,1998年政府就提出扩大内需,调整结构的目标,但是十年来一直没有实现。2001年,中国加入WTO,出口连续几年出现
左边三个图给出了同一个立体图形的不同侧面,右边四个图形中只有一个与该立体图形相同,请把它找出来。
无符号二进制整数111110转换成十进制数是()。
Nuclearpowerplantsprovideabout17percentoftheworld’selectricity.Somecountriesdependmoreonnuclearpowerforelectr
最新回复
(
0
)