首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(06年)设函数f(u)在(0,+∞)内具有二阶导数,且满足等式 (I)验证 (Ⅱ)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
(06年)设函数f(u)在(0,+∞)内具有二阶导数,且满足等式 (I)验证 (Ⅱ)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
admin
2021-01-15
15
问题
(06年)设函数f(u)在(0,+∞)内具有二阶导数,且
满足等式
(I)验证
(Ⅱ)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
选项
答案
[*] 所以根据题设条件可得[*]即 [*] (Ⅱ)由(I)及f’(1)=1,得f’(u)=[*],所以f(u)=lnu+C. 由f(1)=0,得C=0,因此f(u)=lnu.
解析
转载请注明原文地址:https://kaotiyun.com/show/ynq4777K
0
考研数学一
相关试题推荐
设随机变量X的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数。求Y的概率密度fY(y)。
已知随机变量X的概率密度为f(χ)=Aeχ(B-χ)(-∞<χ<+∞),且E(X)=2D(X),试求:(Ⅰ)常数A,B之值;(Ⅱ)B(X2+eX);(Ⅲ)Y=|(X-1)|的分布函数F(y).
求下列函数的带皮亚诺余项的麦克劳林公式:(I)f(x)=sinx3;(Ⅱ)f(x)=xln(1一x2).
设f(x)在[0,1]上二阶连续可导且f(0)=f(1),又|f"(x)|≤M,证明:
设z=f(u,v,x),u=φ(x,y),v=ψ(y)都是可微函数,求复合函数z=f(φ(x,y),ψ(y),x)的偏导数
设f(x)在x=0处可导,f(0)=0,求极限f(x2+y2+z2)dν,其中Ω:≤z≤.
[2010年]设,已知线性方程组AX=b存在两个不同的解.求方程组AX=b的通解.
(1990年)设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b).证明在(a,b)内至少存在一点手,使得f’(ξ)>0.
[2009年]计算曲面积分,其中∑是曲面2x2+2y2+z2=4的外侧.
求曲面积分取上侧.
随机试题
能使心肌梗死患者闭塞的冠状动脉再通的措施有()。
最易发生缺血一再灌注损伤的器官是
纤维性很强的中药细粉制颗粒时,应选用的黏合剂是
某研究小组通过观察2016年-2018年鼻咽癌在珠三角往长江三角移民、珠三角当地人群及长江三角当地人群的发病率和死亡率的差异,探讨鼻咽癌的病因及其与遗传和环境因素的关系。这种方法是
就甲、乙两家投标单位而言,若不考虑资金时间价值,判断并简要分析业主应优先选择哪家投标单位?评标委员会对甲、乙、丙三家投标单位的技术标评审结果见表1-7。评标办法规定:各投标单位报价比标底价每下降1%,扣1分,最多扣10分;报价比标底价每增加1%,扣2
股票市场就是股票发行和交易的场所,由()两个层次构成。
用干画法进行作画时,颜料要求要干,这样才能使得色彩艳丽。()
日本脱口秀表演家金语楼曾获多项专利。有一种在打火机上装一个小抽屉代替烟灰缸的创意,在某次创意比赛中获得了大奖,备受推崇。比赛结束后,东京的一家打火机制造厂商将此创意进一步开发成产品推向市场,结果销路并不理想。以下哪项如果为真,能最好地解释上面的矛盾?(
据国际卫生与保健组织1999—7—年会“通讯与健康”公布的调查报告显示,68%的脑癌患者都有经常使用移动电话的历史。这充分说明,经常使用移动电话将会极大地增加一个人患脑癌的可能性。以下哪项如果为真,则将最严重地削弱上述结论?
一般来说,影响汇率短期变动的最重要因素是()。
最新回复
(
0
)