计算下列各题: 设2x—tan(x一y)=∫0x—ysec2tdt(x≠y),求.

admin2018-06-14  55

问题 计算下列各题:
设2x—tan(x一y)=∫0x—ysec2tdt(x≠y),求

选项

答案因2x—tan(x一y)=∫0x—ysec2tdt=tan(x—y) → x=tan(x—y). 将恒等式两边对x求导数,得 1=[*](1—y’)→1—y’=cos2(x—y)→y’=sin2(x—y). 将上式两端再对x求导,又得 y"=2sin(x一y)cos(x一y).(1一y’)=sin2(x一y).cos2(x—y).

解析
转载请注明原文地址:https://kaotiyun.com/show/z9W4777K
0

最新回复(0)