首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(u)具有二阶连续导数,z=f(excos y)满足=(4z+excos y)e2x.若f((0)=0,f’(0)=0,求f(u)的表达式.
设函数f(u)具有二阶连续导数,z=f(excos y)满足=(4z+excos y)e2x.若f((0)=0,f’(0)=0,求f(u)的表达式.
admin
2022-09-08
56
问题
设函数f(u)具有二阶连续导数,z=f(e
x
cos y)满足
=(4z+e
x
cos y)e
2x
.若f((0)=0,f’(0)=0,求f(u)的表达式.
选项
答案
由z=f(e
x
cos y)得[*]=f’(e
x
cos y)·(-e
x
sin y), [*]=f”(e
x
cos y)·e
x
cos y·e
x
cos y+f’(e
x
cos y)·e
x
cos y =f”(e
x
cos y)·e
2x
cos
2
y+f’(e
x
cos y)·e
x
cos y, [*]=f”(e
x
cos y)·(-e
x
sin y)·(-e
x
sin y)+f’(e
x
cos y)·(-e
x
cos y)=f”(e
x
cos y)·e
2x
sin
2
y-f’(e
2x
cos y)·e
2x
cos y. 由[*]=(4z+e
x
cos y)e
2x
,代入得 f”(e
x
cos y)·e
2x
=[4f(e
x
cos y)+e
x
cos y]e
2x
, 即 f”(e
x
cos y)-4f(e
x
cos y)=e
x
cos y, 令e
x
cos y=u,得f”(u)-4f(u)=u. 特征方程为λ
2
-4=0,解得λ=±2,得齐次方程通解[*]=C
1
e
2u
+C
2
e
-2u
. 设特解y
*
=au+b,代入方程得a=-1/4,b=0,得特解y
*
=[*]。 则原方程通解为y=f(u)=C
1
e
2u
+C
2
e
-2u
-[*]。 由f(0)=0,f’(0)=0,得C
1
=1/16,C
2
=-1/16,则 [*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/zIe4777K
0
考研数学一
相关试题推荐
求极限
设函数f(x)在[a,b]上正值连续,证明:在[a,b]上存在一点ξ,使
求x=cost(0<t<π)将方程(1一x2)y"一xy’+y=0化为y关于t的微分方程,并求满足y|x=0=1,y|x=0=2的解.
设f(x)在区间[一3,0)上的表达式为f(x)=则其正弦级数在点x=20处收敛于_________.
化二次型f(x1,x2,x3)=2x1x2+2x1x3-6x2x3为标准形,并求所用的可逆线性变换矩阵.
3阶行列式=().
(数学一)已知α1=(1,2,1)T,α2=(2,3,3)T,α31=(3,7,1)T与β1=(2.1,1)T,β2=(5,2,2)T,β3=(1,3,4)T是R2的两组基,则在这两组基底下有相同的坐标为__________.
n阶矩阵A和B具有相同特征向量是A与B相似的()条件.
设A为3阶实对称阵,且满足条件A3+2A2=0,已知A的秩R(A)=2,(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵?其中E为3阶单位矩阵.
由题设,设FY(y)是Y的分布函数,则由全概率公式,得U=X+Y的分布函数为G(u)=P{X+Y≤u}=0.3P{X+Y≤u|X=1}+0.7P{X+Y≤u|X=2}=0.3P{y≤u-1|X=1}+0.7P{y≤u-2|X=2}由已知X与Y独立,则P
随机试题
患者,女,40岁。因慢性腹泻半年余,伴左下腹隐痛,体查:左下腹压痛。门诊行X线钡剂灌肠检查,见结肠边缘毛刺状,结肠袋消失,肠壁变硬,肠管缩短,肠腔变窄呈铅管状,其诊断应考虑为
血红蛋白分子中含的金属离子是()
嗜酸性粒细胞减少见于的疾病是
左心衰竭时,最早出现和最重要的症状是( )。
A.暴泻不止,便稀如水B.泻下无度,质稀如水C.食后作泻,色淡不臭D.大便水样,或如蛋花汤样E.泄泻清稀,中多泡沫阴竭阳脱型泄泻可见()
上诉机构的审议一般不超过()日。
(2017年)二元函数z=xy(3一x—y)的极值点是()
设线性方程组已知(1,一1,1,一1)T是该方程组的一个解.试求:(1)方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;(2)该方程组满足x2=x3的全部解.
REDOUBTABLE:
LeonardodaVinciAsapainter,hislegacyofworkisindisputablylessextensivethanothermasterpainters.Asananatomis
最新回复
(
0
)