首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n>1,n元齐次方程组AX=0的系数矩阵为 (1)讨论a为什么数时AX=0有非零解? (2)在有非零解时求通解.
设n>1,n元齐次方程组AX=0的系数矩阵为 (1)讨论a为什么数时AX=0有非零解? (2)在有非零解时求通解.
admin
2018-11-11
142
问题
设n>1,n元齐次方程组AX=0的系数矩阵为
(1)讨论a为什么数时AX=0有非零解?
(2)在有非零解时求通解.
选项
答案
(1)用矩阵消元法,把第n行除以n移到第一行,其他行往下顺移,再第i行减第一行的i倍(i>1). [*] a=0时r(A)=1,有非零解. 下面设a≠0,对右边的矩阵继续进行行变换:把第2至n各行都除以a,然后把第1行减下面各行后换到最下面,得 [*] 于是当a=-n(n+1)/2时r(A)=n-1,有非零解. (2)a=0时AX=0与x
1
+x
2
+…+x
n
=0同解,通解为 c
1
(1,-1,0,…,0)
T
+c
2
(1,0,-1,…,0)
T
+…+c
n-1
(1,0,0,…,-1)
T
,c
i
任意. a=-n(n+1)/2时,通解为 c(1,2,3,…,n)
T
,c任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/zRj4777K
0
考研数学二
相关试题推荐
设u=u(x,y)为二元可微函数,且满足,则当x≠0时,=()
设n阶矩阵A的各行元素之和均为0,且A的伴随矩阵A*≠O,则线性方程组Ax=0的通解为__________.
对于以下各数字特征都存在的任意两个随机变量X和Y,如果E(XY)=E(X)E(Y),则有()
设4维向量空间V的两个基分别为(I)α1,α2,α3,α4;(Ⅱ)β1=α1+α2+α3,β2=α2+α3,β3=α3+α4,β4=α4,求由基(Ⅱ)到基(I)的过渡矩阵;
确定常数α使向量组α1=(1,1,a)T,α2=(1,n,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
求极限
用拉格朗日乘数法计算下列各题:(1)欲围一个面积为60m2的矩形场地,正面所用材料每米造价10元,其余三面每米造价5元.求场地长、宽各为多少米时,所用材料费最少?(2)用a元购料,建造一个宽与深相同的长方体水池,已知四周的单位面积材料费为底面单位面积材
证明下列各题:
下列各题计算过程中正确的是()
证明下列各题:
随机试题
A.呼吸困难B.呕吐C.腰痛D.肌肉震颤E.腹泻属呼吸系统疾病问诊内容的是()
慢性肾衰竭,血钾>6.5mmol/L时最佳的治疗措施是
口服给药注意事项中正确的是()
图示电路中,电流有效值I1=10A,IC=SA,总功率因数cosφ为1,则电流I是()。
城市供电工程系统中直接为用户供电的是()。
我国《证券法》的适用范围是中国境内()。
假定在其他条件相同的情况下,下列公司中最有可能获得银行贷款的条件是()。
甲伪造国家机关公文用于实施诈骗活动,分别构成伪造国家机关公文罪和诈骗罪,这种情形属于罪数论中的()。
“天下虽安,忘战必危”是我国古代著名的军事思想,充满着朴素的辩证法智慧。下列体现的哲学思想与这句话相同的是:
某海关的报关大厅排队人多,所以改成电话预约。但群众反映改变后电话一直打不进去,反而降低了效率。领导把这个事情交给你去办,请问你怎么处理?
最新回复
(
0
)