首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若α1,α2,α3线性无关,那么下列线性相关的向量组是
若α1,α2,α3线性无关,那么下列线性相关的向量组是
admin
2016-10-20
38
问题
若α
1
,α
2
,α
3
线性无关,那么下列线性相关的向量组是
选项
A、α
1
,α
1
+α
2
,α
1
+α
2
+α
3
.
B、α
1
+α
2
,α
1
-α
2
,-α
3
C、 -α
1
+α
2
,α
2
+α
3
,α
3
-α
1
.
D、α
1
-α
2
,α
2
-α
3
,α
3
-α
1
.
答案
D
解析
用观察法.由
(α
1
-α
2
)+(α
2
-α
3
)+(α
3
-α
1
)=0,
可知α
1
-α
2
,α
2
-α
3
,α
3
-α
1
线性相关.故应选(D).
至于(A),(B),(C)线性无关的判断可以用秩也可以用行列式不为0来判断.
例如,(A)中r(α
1
,α
1
+α
2
,α
1
+α
2
+α
3
)=r(α
1
,α
1
+α
2
,α
3
)=r(α
1
,α
2
,α
3
)=3.
或(α
1
,α
1
+α
2
,α
1
+α
2
+α
3
)=(α
1
,α
2
,α
3
)
由行列式
≠0而知α
1
,α
1
+α
2
,α
1
+α
2
+α
3
线性无关.
转载请注明原文地址:https://kaotiyun.com/show/zYT4777K
0
考研数学三
相关试题推荐
一根长为l的棍子在任意两点折断,试计算得到的三段能围成三角形的概率.
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),求:(1)t为何值时,向量组α1,α2,α3线性相关;(2)t为何值时,向量组α1,α2,α3线性无关;(3)当线性相关时,将α3表为α1和α2的线性组合.
已知二次型f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4,则二次型f(x1,x2,x3,x4)的矩阵为_______,二次型f(x1,x2,x3,x4)的秩为________.
(1)微分方程的阶数是指__________.(2)n阶微分方程的初值条件的一般形式为______________.(3)函数y1(x)与y2(x)在区间I上线性无关的充要条件是___________.(4)函数y=eλx是常系数线性微分方程yn+P
求出曲面z=xy上的点,使这点处的法线垂直于平面x+3y+z+9=0,并写出这法线的方程.
在“充分而非必要”、“必要而非充分”和“充分必要”三者中选择一个正确的填人下列空格内:(1)f(x)在点x。连续是f(x)在点x。可导的__________条件;(2)f(x)在点x。的左导数fˊ-(x。)及右导数fˊ+=(x。)都存在且相等是f(x)
求下列极限.
试求正数λ的值,使得曲面xyz=λ与曲面在某一点相切.
设f(x)为正值连接函数,f(0)=1,且对任一x>0,曲线y=f(x)在区间[0,x]上的一段弧长等于此弧段下曲边梯形的面积,求此曲线方程.
计算下列各题:
随机试题
外国人在中国收养子女,应当经_________审查。()
简述我国社会保障制度建设的基本原则。
Thefirsthotelswereverydifferentfromtoday’shotels.Theyweresmallinnsbuiltalongtheroad.Later,aspeoplebegantot
小儿汗证的常见病因是()
麦芽糖酶能水解
下列有关水泥稳定粒料基层的说法,错误的是()。
大唐电信代表中国提出的()采用了TDD模式,支持不对称业务。
目前常用的风险价值模型技术不包括()。
Anewsatellitesweepingoverthepolesataltitudesofupto32,000milesiscalledPOLAR,givingscientiststheirbestlookye
Youcantelltheageofatreeby【B1】______itsrings,buttheserecordsofatree’slifereallysayalotmore.Scientistsare
最新回复
(
0
)