首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量β=(a1,a2,a3,a4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,-1,-3)T,α4=(0,0,3,3)T线性表出。 (Ⅰ)求a1,a2,a3,a4应满足的条件; (Ⅱ)求向量组α1,α2,α3
已知向量β=(a1,a2,a3,a4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,-1,-3)T,α4=(0,0,3,3)T线性表出。 (Ⅰ)求a1,a2,a3,a4应满足的条件; (Ⅱ)求向量组α1,α2,α3
admin
2018-01-26
76
问题
已知向量β=(a
1
,a
2
,a
3
,a
4
)
T
可以由α
1
=(1,0,0,1)
T
,α
2
=(1,1,0,0)
T
,α
3
=(0,2,-1,-3)
T
,α
4
=(0,0,3,3)
T
线性表出。
(Ⅰ)求a
1
,a
2
,a
3
,a
4
应满足的条件;
(Ⅱ)求向量组α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,并将其余向量用该极大线性无关组线性表出;
(Ⅲ)把向量β分别用α
1
,α
2
,α
3
,α
4
和它的极大线性无关组线性表出。
选项
答案
(Ⅰ)β可由α
1
,α
2
,α
3
,α
4
线性表示,即方程组(1)x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β有解,对增广矩阵作初等行变换,有 [*] 所以向量β可以由α
1
,α
2
,α
3
,α
4
线性表出的充分必要条件是:a
1
-a
2
+a
3
-a
4
=0。 (Ⅱ)由(Ⅰ)初等变换矩阵知,向量组α
1
,α
2
,α
3
,α
4
的极大线性无关组是α
1
,α
2
,α
3
,且 α
4
=-6α
1
+6α
2
-3α
3
(2) (Ⅲ)方程组(1)的通解是 x
1
=a
1
-a
2
-2a
3
+6t,x
2
=a
2
+2a
3
-6t, x
3
=3t-a
3
,x
4
=t,其中t为任意常数, 所以β=(a
1
-a
2
-2a
3
+6t)α
1
+(a
2
+2a
3
-6t)α
2
+(3t-a
3
)α
3
+tα
4
,其中t为任意常数。 把(2)式代入,得 β=(a
1
-a
2
-2a
3
)α
1
+(a
2
+2a
3
)a
2
-a
3
α
3
。
解析
转载请注明原文地址:https://kaotiyun.com/show/zcr4777K
0
考研数学一
相关试题推荐
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,an为常数,且对一切x有|f(x)|≤|ex一1|.证明:|a1+2a2+…+nan|≤1.
设某产品的指标服从正态分布,它的标准差为σ=100,今抽了一个容量为26的样本,计算平均值1580,问在显著性水平α=0.05下,能否认为这批产品的指标的期望值μ不低于1600.
求微分方程的通解.
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1,则它的每个元素等于自己的代数余子式乘一1.
设向量α=[a1,a2……an]T,β=[b1,b2……bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A的特征值和特征向量;
设矩阵有三个线性无关特征向量,λ=2是A的二重特征值,试求可逆阵P使得P-1AP=A,A是对角阵.
设随机变量X和Y均服从,且D(X+Y)=1,则X与Y的相关系数ρ=___________.
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
设n阶方阵A的每行元素之和为a,|A|≠0,则A-1的每行元素之和为a-1。
设A=(I)计算行列式|A|;(Ⅱ)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
随机试题
下列省区全称、简称和行政中心连线正确的是()。
吴某,男,42岁,患重症肌无力多年,近日劳累后肢体痿软无力逐渐加重,食少,便溏,腹胀,面浮而色不华,气短,神疲乏力,苔薄白,脉细。
中药饮片的标签不须注明的内容是
土地所有权的(),包含着一条重要的立法原则,就是避免农村集体土地特别是耕地和其他农业用地的流失。
吊顶在构造上由()等部分组成。
()属于WAI指标。
某公司举办年终晚宴,每桌安排7名普通员工与3名管理人员;到最后2桌时,由于管理人员已经安排完,便全部安排了普通员工,结果还差2人才能刚好坐满。已知该公司普通员工人数是管理人员的3倍,则该公司有管理人员()名。
马克思主义唯物辩证法认为,事物发展的根本规律是()。
【F1】StephenHawking,whospenthiscareerdecodingtheuniverseandevenexperiencedweightlessness,isurgingthecontinuation
UKNewspapersI.Briefintroduction—manynationalnewspapers—nonational【B1】______titles【B1】______—beingdividedintothree
最新回复
(
0
)