首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量β=(a1,a2,a3,a4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,-1,-3)T,α4=(0,0,3,3)T线性表出。 (Ⅰ)求a1,a2,a3,a4应满足的条件; (Ⅱ)求向量组α1,α2,α3
已知向量β=(a1,a2,a3,a4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,-1,-3)T,α4=(0,0,3,3)T线性表出。 (Ⅰ)求a1,a2,a3,a4应满足的条件; (Ⅱ)求向量组α1,α2,α3
admin
2018-01-26
34
问题
已知向量β=(a
1
,a
2
,a
3
,a
4
)
T
可以由α
1
=(1,0,0,1)
T
,α
2
=(1,1,0,0)
T
,α
3
=(0,2,-1,-3)
T
,α
4
=(0,0,3,3)
T
线性表出。
(Ⅰ)求a
1
,a
2
,a
3
,a
4
应满足的条件;
(Ⅱ)求向量组α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,并将其余向量用该极大线性无关组线性表出;
(Ⅲ)把向量β分别用α
1
,α
2
,α
3
,α
4
和它的极大线性无关组线性表出。
选项
答案
(Ⅰ)β可由α
1
,α
2
,α
3
,α
4
线性表示,即方程组(1)x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β有解,对增广矩阵作初等行变换,有 [*] 所以向量β可以由α
1
,α
2
,α
3
,α
4
线性表出的充分必要条件是:a
1
-a
2
+a
3
-a
4
=0。 (Ⅱ)由(Ⅰ)初等变换矩阵知,向量组α
1
,α
2
,α
3
,α
4
的极大线性无关组是α
1
,α
2
,α
3
,且 α
4
=-6α
1
+6α
2
-3α
3
(2) (Ⅲ)方程组(1)的通解是 x
1
=a
1
-a
2
-2a
3
+6t,x
2
=a
2
+2a
3
-6t, x
3
=3t-a
3
,x
4
=t,其中t为任意常数, 所以β=(a
1
-a
2
-2a
3
+6t)α
1
+(a
2
+2a
3
-6t)α
2
+(3t-a
3
)α
3
+tα
4
,其中t为任意常数。 把(2)式代入,得 β=(a
1
-a
2
-2a
3
)α
1
+(a
2
+2a
3
)a
2
-a
3
α
3
。
解析
转载请注明原文地址:https://kaotiyun.com/show/zcr4777K
0
考研数学一
相关试题推荐
求极限
设f(x)在[0,+∞)内可导且f(0)=1,f’(x)<f(x)(x>0).证明:f(x)<ex(x>0).
设=A,证明:数列{an}有界.
[*]
设n阶矩阵A的元素全是1,则A的n个特征值是__________.
设n阶方阵A的每行元素之和为a,|A|≠0,则A-1的每行元素之和为a-1。
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=.(1)记x=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型
计算下列n阶行列式:
设三阶方阵A、B满足A2B—A—B=E,其中E为三阶单位矩阵,若A=,则行列式|B|=________.
对于随机变量X1,X2,…,Xn,下列说法不正确的是().
随机试题
消费率等于最终消费总量除以()
子宫肌瘤肉瘤变多见于年龄较大妇女。()
Thegreatquestionthatthispaperwill,butfeebly,attempttoansweris,whatisthecreativeprocess?Thoughmuchtheory
行政责任主要包括行政处罚和刑事处罚两种方式。()
下列各项属于信息系统的有()。
Artificialintelligencedealspartlywiththe________betweenthecomputerandthehumanbrain.
下列关于Windows2003系统下DHCP服务器的描述中,错误的是()。
ThePeasantUprisingledbyJohnBallhappenedin______.
Manydoctorsknowthestoryof’MrWright’.In1957hewasdiagnosedwithcancer,andgivenonlydaystolive.Hehadtumourst
Therearemanyfeaturesthat【C1】______amovieasAmerican,butperhapsthemost【C2】______isthethemeoftheloner-hero.Int
最新回复
(
0
)