首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量β=(a1,a2,a3,a4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,-1,-3)T,α4=(0,0,3,3)T线性表出。 (Ⅰ)求a1,a2,a3,a4应满足的条件; (Ⅱ)求向量组α1,α2,α3
已知向量β=(a1,a2,a3,a4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,-1,-3)T,α4=(0,0,3,3)T线性表出。 (Ⅰ)求a1,a2,a3,a4应满足的条件; (Ⅱ)求向量组α1,α2,α3
admin
2018-01-26
67
问题
已知向量β=(a
1
,a
2
,a
3
,a
4
)
T
可以由α
1
=(1,0,0,1)
T
,α
2
=(1,1,0,0)
T
,α
3
=(0,2,-1,-3)
T
,α
4
=(0,0,3,3)
T
线性表出。
(Ⅰ)求a
1
,a
2
,a
3
,a
4
应满足的条件;
(Ⅱ)求向量组α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,并将其余向量用该极大线性无关组线性表出;
(Ⅲ)把向量β分别用α
1
,α
2
,α
3
,α
4
和它的极大线性无关组线性表出。
选项
答案
(Ⅰ)β可由α
1
,α
2
,α
3
,α
4
线性表示,即方程组(1)x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β有解,对增广矩阵作初等行变换,有 [*] 所以向量β可以由α
1
,α
2
,α
3
,α
4
线性表出的充分必要条件是:a
1
-a
2
+a
3
-a
4
=0。 (Ⅱ)由(Ⅰ)初等变换矩阵知,向量组α
1
,α
2
,α
3
,α
4
的极大线性无关组是α
1
,α
2
,α
3
,且 α
4
=-6α
1
+6α
2
-3α
3
(2) (Ⅲ)方程组(1)的通解是 x
1
=a
1
-a
2
-2a
3
+6t,x
2
=a
2
+2a
3
-6t, x
3
=3t-a
3
,x
4
=t,其中t为任意常数, 所以β=(a
1
-a
2
-2a
3
+6t)α
1
+(a
2
+2a
3
-6t)α
2
+(3t-a
3
)α
3
+tα
4
,其中t为任意常数。 把(2)式代入,得 β=(a
1
-a
2
-2a
3
)α
1
+(a
2
+2a
3
)a
2
-a
3
α
3
。
解析
转载请注明原文地址:https://kaotiyun.com/show/zcr4777K
0
考研数学一
相关试题推荐
求极限
求由方程x2+y3一xy=0确定的函数在x>0内的极值,并指出是极大值还是极小值.
证明:若A为m×n矩阵,B为n×p矩阵,则有r(AB)≥r(A)+r(B)一n.特别地,当AB=O时,有r(A)+r(B)≤n.
设B是3阶非零阵,且AB=0,则Ax=0的通解是__________.
已知f(x1,x2,x3)=5x12+5x22+cx32一2x1x2+6x1x3—6x2x3的秩为2.试确定参数c及二次型对应矩阵的特征值,并问f(x1,x
当x>0时,曲线y=
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组AX=b的通解X=()。
设(X,Y)服从二维正态分布,则下列说法不正确的是().
随机试题
各国对国际证券发行的审核制度基本上可分为()
下列与SLE病情活动性有关的实验室检查包括
循环系统平均充盈压反映下列哪项的高低?
虚劳五脏气血阴阳的损伤,有各自不同的重点,说法错误的是
在房地产交易撮合中,房地产经纪人应解决的主要问题是()。
下列()属于建设用地规划管理中提供规划设计条件的内容。
会计凭证按其来源和用途可以分为()。
晚年陈寅恪先生“著书唯剩颂红妆”,______孤鸿落照,意味着从政治史和制度史的前沿作出无可奈何的退却,亦决不可与自娱式的“文儒老病销愁送日之具”______,而是来自他的文化使命感,他把柳如是当作理想化的人格标本,追寻那种他唯恐失落的民族精神。依
ARM状态下指令代码长度的位数为【49】位、Thumb状态下指令代码长度的位数为【50】位。
Newinventionsareappearingeverydaytomakeourliveseasier,longer,warmer,speedierandsoon.Butonlyafewinventorsde
最新回复
(
0
)