首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λs,λ1,…,λ2,使(k1+λ1)α1+(k2+λ2)α2+…+(k2+λ1)β1+(k1一λ1)β1+…+(ks一λs)βs=0,则
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λs,λ1,…,λ2,使(k1+λ1)α1+(k2+λ2)α2+…+(k2+λ1)β1+(k1一λ1)β1+…+(ks一λs)βs=0,则
admin
2015-08-17
126
问题
设有两个n维向量组(I)α
1
,α
2
,…,α
s
,(Ⅱ)β
1
,β
2
,…,β
s
,若存在两组不全为零的数k
1
,k
2
,…,k
s
,λ
s
,λ
1
,…,λ
2
,使(k
1
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
2
+λ
1
)β
1
+(k
1
一λ
1
)β
1
+…+(k
s
一λ
s
)β
s
=0,则 ( )
选项
A、α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性相关
B、α
1
,…,α
s
,及β
1
,…,β
s
,均线性无关
C、α
1
,…,α
s
及β
1
,…,β
s
均线性相关
D、α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性无关
答案
A
解析
存在不全为0的k
1
,k
2
,……,k
s
,λ
1
,λ
2
,…,λ
n
使得 (k
1
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
一λ
1
)β
1
+(k
2
一λ
2
)β
2
+…+(k
s
一λ
s
)β
s
=0,整理得k
1
(α
1
+β
1
)+k
2
(α
2
+β
2
)+…+k
s
(α
s
+β
s
)+λ
1
(α
1
一β
1
)+λ
2
(α
2
一β
2
)+…+λ
s
(α
s
一β
s
)=0,从而得α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/l1w4777K
0
考研数学一
相关试题推荐
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e-x-3e2x为特解,求该微分方程.
设y=y(x)为微分方程2xydx+(x2-1)dy=0满足初始条件y(0)=1的解,则∫01/2y(x)dx为().
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
求矩阵A=的特征值与特征向量.
设3阶矩阵A有3个特征向量η1=(1,2,2)T,η2=(2,-2,1)T,η3=(-2,-1,2)T,它们的特征值依次为1,2,3,求A.
证明:方程|x|1/4+|x|1/2-1/2cosx=0在(-∞,+∞)内仅有两个实根.
随机试题
《马伶传》一文的文体是()
患者女性,58岁,绝经2年。阴道少量出血伴阵发性排液1月余,无腹痛,无接触性出血。妇科检查:宫颈光滑,子宫稍小、活动,左附件区触及4cm×4cm×3cm实性包块。对诊断此病有帮助的检查是
兄弟姐妹间交换的移植均称为
妊娠禁用药不包括下列哪类
关于契税的计税依据,下列表述正确的有()。
情况汇报王××二〇〇八年七月五日2008年入春以来,我县连续干旱少雨,月均降水量不足5毫米,农作物受灾困难,人民生活用水出现困难。据统计,全县受灾面积达到80%,大量农作物因缺水而减产,在××乡甚至出现枯死现象,预计损失将达2亿元;受干旱影响,部分
俗话说,春困秋乏。夏天天气炎热,大量出汗使人体水盐代谢失调,胃肠功能减弱,心血管系统负担增加,过度消耗的能量得不到适度的补偿,结果欠下了一笔“夏耗债务”。而秋天到来之后,人体各种生理系统也相应发生变化,出汗较少,体热的产生和散发、水盐代谢也恢复了日常的平衡
计算,其中D={(x,y)|一1≤x≤1,0≤y≤2}.
ACiscorouterisbootingandhasjustcompletedthePOSTprocess.ItisnowreadytofindandloadanIOSimage.Whatfunction
ManycountrieswillnotallowcigaretteadvertisingintheirnewspaperoronTV—especially【C1】______theadvertisementsareusu
最新回复
(
0
)