首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λs,λ1,…,λ2,使(k1+λ1)α1+(k2+λ2)α2+…+(k2+λ1)β1+(k1一λ1)β1+…+(ks一λs)βs=0,则
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λs,λ1,…,λ2,使(k1+λ1)α1+(k2+λ2)α2+…+(k2+λ1)β1+(k1一λ1)β1+…+(ks一λs)βs=0,则
admin
2015-08-17
130
问题
设有两个n维向量组(I)α
1
,α
2
,…,α
s
,(Ⅱ)β
1
,β
2
,…,β
s
,若存在两组不全为零的数k
1
,k
2
,…,k
s
,λ
s
,λ
1
,…,λ
2
,使(k
1
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
2
+λ
1
)β
1
+(k
1
一λ
1
)β
1
+…+(k
s
一λ
s
)β
s
=0,则 ( )
选项
A、α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性相关
B、α
1
,…,α
s
,及β
1
,…,β
s
,均线性无关
C、α
1
,…,α
s
及β
1
,…,β
s
均线性相关
D、α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性无关
答案
A
解析
存在不全为0的k
1
,k
2
,……,k
s
,λ
1
,λ
2
,…,λ
n
使得 (k
1
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
一λ
1
)β
1
+(k
2
一λ
2
)β
2
+…+(k
s
一λ
s
)β
s
=0,整理得k
1
(α
1
+β
1
)+k
2
(α
2
+β
2
)+…+k
s
(α
s
+β
s
)+λ
1
(α
1
一β
1
)+λ
2
(α
2
一β
2
)+…+λ
s
(α
s
一β
s
)=0,从而得α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/l1w4777K
0
考研数学一
相关试题推荐
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e-x-3e2x为特解,求该微分方程.
4阶矩阵A,B满足ABA-1=BA-1+3E,已知
已知向量组有相同的秩,且β3可由α1,α2,α3线性表出,求a,b的值.
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα2,…,Ak-1α是线性无关的.
求矩阵A=的特征值与特征向量.
设3阶矩阵A的特征值为一1,1,1,对应的特征向量分别为α1=(1,一1,1)T,α2=(1,0,一1)T,α3=(1,2,一4)T,求A100.
求A=的特征值和特征向量.
随机试题
舌头根部宜辨别()。
设X1,X2,…,Xn是取自X~N(μ,σ2)的样本,其中σ2已知,令,并给定α(0<α<1),如果P{|Z|<z1-n/2)=1一α,则__________不成立.()
Theoldadvertisingslogan,"Sosimpleachildcandoit",hastakenonnewmeaningforme.AfewweeksagoIgotacomputer,bu
婴儿腹泻第一天补液总量中度脱水按()
免疫对机体的作用是()。
在()结构中不允许出现多重指令。
在巴甫洛夫的实验中把食物称为()
WAP uses(71), which includes the Handheld Device Markup Language (HDML) developed by Phone.com. WML can also trace its roots to
WhatshouldwecallthepersonwhomakesresearchintoCognitiveBehaviorWhichofthefollowingisclosestinmeaningtothep
Whatwillhappeniftheplaqueonyourteethisnottakenaway?Itwillgradually______.
最新回复
(
0
)