首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是 η1=(1,3,0,2)T,η2=(1,2,-1,3)T, 又知齐次方程组Bx=0的基础解系是 β1=(1,1,2,1)T,β2=(0,-3,1,a)T, (Ⅰ)求矩阵A;
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是 η1=(1,3,0,2)T,η2=(1,2,-1,3)T, 又知齐次方程组Bx=0的基础解系是 β1=(1,1,2,1)T,β2=(0,-3,1,a)T, (Ⅰ)求矩阵A;
admin
2015-05-07
55
问题
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是
η
1
=(1,3,0,2)
T
,η
2
=(1,2,-1,3)
T
,
又知齐次方程组Bx=0的基础解系是
β
1
=(1,1,2,1)
T
,β
2
=(0,-3,1,a)
T
,
(Ⅰ)求矩阵A;
(Ⅱ)如果齐次线性方程组Ax=0与Bx=0有非零公共解,求a的值并求公共解.
选项
答案
(Ⅰ)记C=(η
1
,η
2
),由AC=A(η
1
,η
2
)=0知C
T
A
T
=0,则矩阵A
T
的列向量(即矩阵A的行向量)是齐次线性方程组C
T
x=0的解.对C
T
作初等行变换,有 [*] 得到C
T
x=0的基础解系为α
1
=(3,-1,1,0)
T
,α
2
=(-5,1,0,1)
T
. 所以矩阵A=[*] (Ⅱ)设齐次线性方程组Ax=0与Bx=0的非零公共解为γ,则γ既可由η
1
,η
2
线性表出, 也可由β
1
,β
2
线性表出,故可设 γ=x
1
η
1
+x
2
η
2
=-x
3
β
1
-x
4
β
2
, 于是 x
1
η
1
+x
2
η
2
+x
3
β
1
+x
β
2
=0. 对(η
1
,η
2
,β
1
,β
2
)作初等行变换,有 (η
1
,η
2
,β
1
,β
2
)=[*]γ≠0[*]x
1
,x
2
,x
3
,x
4
不全为0[*秩r(η
1
,η
2
,β
1
,β
2
)<4[*]a=0. 当a=0时,解出x
4
=t,x
3
=-t,x
2
=-t,x
1
=2t. 因此Ax=0与Bx=0的公共解为γ=2tη
1
-tη
2
=t(1,4,1,1)
T
,其中t为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/zi54777K
0
考研数学一
相关试题推荐
设多项式函数,则f(x)的四阶导数f(4)(x)=________.
设f(x,y)=计算,其中D为正方形区域{(x,y)|0≤x≤1,0≤y≤1}.
设f(x,y)在点O(0,0)的某邻域U内连续,且,常数a>.讨论f(0,0)是否为f(x,y)的极值?若是极值,判断是极大值还是极小值?
已知函数f(x,y)在点(0,0)的某个邻域内连续,且33=一2,则().
讨论反常积分的敛散性,若收敛计算其值.
设a1=1,当n≥1时,an+1=,证明:数列{an}收敛并求其极限.
设f(x)=x3-3x+k只有一个零点,则k的取值范围是().
设数列{xn}满足xn+1=,0≤x1<3,n=1,2,….证明xn存在,并求此极限.
过曲面=4上任一点的切平面在三个坐标轴上的截距的平方和为().
设A,B为同阶可逆矩阵,则().
随机试题
产后出血居我国孕产妇死亡原因第一位。
肺原性心脏病支气管内膜结核
症见泄泻清稀,甚则如水样,脘闷食少,腹痛肠鸣,恶寒,发热,头痛,肢体酸痛,舌苔白,脉濡缓。辨病为
马兜铃酸的主要毒性是()。
关于宪法规范的特性,下列表述不成立的是?()
土方作业阶段,采取洒水、覆盖等措施,达到作业区目测扬尘分、高度小于()米,不扩散到场区外。
Thebatisamarvelofevolutionaryadaptation.Mostofthemroostduringtheday,andareactiveatnightortwilightforthey
①设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).
面向服务(Service-Oriented,SO)的开发方法将(1)的定义与实现进行解耦,并将跨构件的功能调用暴露出来。该方法有三个主要的抽象级别,最低层的(2)代表单个逻辑单元的事物,包含特定的结构化接口,并且返回结构化的响应;第二层的服务代表操作的逻辑
SorryIcan’tansweryourquestion.Iknow______aboutthesubject.
最新回复
(
0
)