首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)=a(a≠0),试证明对任意x,f’(x)都存在,并求f(x)。
设f(x)在(-∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)=a(a≠0),试证明对任意x,f’(x)都存在,并求f(x)。
admin
2017-08-28
40
问题
设f(x)在(-∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)e
y
+f(y)e
x
,又设f’(0)=a(a≠0),试证明对任意x,f’(x)都存在,并求f(x)。
选项
答案
将x=y=0代入f(x+y)=f(x)e
y
+f(y)e
x
,得f(0)=0。由导数定义得 [*] =f(x)+f’(0)e
x
=f(x)+ae
x
, 所以对任意x,f’(x)都存在,且f’(x)=f(x)+ae
x
。 解此一阶线性方程,得 f(x)=e
∫dx
(∫ae
x
e
-∫dx
,dx+C)=e
x
(ax+C), 再由f(0)=0,得C=0,即f(x)=axe
x
。
解析
转载请注明原文地址:https://kaotiyun.com/show/znr4777K
0
考研数学一
相关试题推荐
设a与b都是常数且b>a>0.S所围成的实心环的空间区域为Ω,计算三重积分
微分方程满足初始条件的特解是____________.
设齐次线性方程组有基础解系β1=[b11,b12,b13,b14]T,β2=[b21,b22,b23,b24]T,记α1=[α11,α12,α13,α14]T,α2=[α21,α22,α23,α24]T.证明:向量组α1,α2,β3,β4线性无关.
设为曲线y=y(x)在区间一1≤x≤1上的弧段,则平面第一型曲线积分=__________.
(2004年试题,三)设有方程xn+nx一1=0,其中n为正整数.证明此方程存在唯一正实根xn,并证明当α>1时,级数收敛.
设π为过直线L:且与平面x一2y+z一3=0垂直的平面,则点M(3,一4,5)到平面π的距离为_______.
已知(X,Y)为一个二维随机变量,X1=X+2Y,X2=X-2Y.(X1,X2)的概率密度为f(x1,x2)=(Ⅰ)分别求出X和Y的密度函数;(Ⅱ)求X和Y的相关系数,并由此写出(X,Y)的联合密度.
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e-x一3e2x为特解,求该微分方程.
现有奖券100万张,其中一等奖1张,奖金5万元;二等奖4张,每张奖金2500元;三等奖40张,每张奖金250元;四等奖400张,每张奖金25元,而每张奖券2元,试计算买一张奖券的平均收益.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
随机试题
Itisestimatedthattherearemorethan8millionrestaurantsintheworldtoday.Soitmightsurpriseyoutolearnthatrestau
患儿,男,生后3天。体重3200g,皮肤巩膜发黄,血清总胆红素280μmol/L。根据该新生儿的临床表现,应考虑为
受益人的信托受益权可以依法转让和继承,但信托文件有限制性规定的除外。( )
为每一职位的各个考核维度都设计出一个评分计量表,量表中的每个分数刻度都对应有一些典型行为的描述性文字说明,这种绩效考核的方法是()。
下列各项中,应征收资源税的有()。
下列关于企业资产损失税前扣除政策表述不正确的是()。
游客就餐时应遵守的文明旅游规范是()。
天空中过往飞机的轰鸣引起儿童不由自主的注意,这是()
以下______地址是MAC地址。
Hisofficeis______tothePresident’s;itusuallytakeshimaboutthreeminutestogetthere.
最新回复
(
0
)