首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶正定矩阵,x是n维列向量,E是n阶单位阵,记 写出二次型f=|W|的矩阵表达式,并讨论f的正定性.
设A是n阶正定矩阵,x是n维列向量,E是n阶单位阵,记 写出二次型f=|W|的矩阵表达式,并讨论f的正定性.
admin
2014-04-23
51
问题
设A是n阶正定矩阵,x是n维列向量,E是n阶单位阵,记
写出二次型f=|W|的矩阵表达式,并讨论f的正定性.
选项
答案
因[*]故f的矩阵表达式为: [*] =(一1)
n
|A|x
T
A
-1
x=(一1)
n
x
T
|A|A
-1
x=(一1)
n
x
T
A
*
x. 由A是正定矩阵知,|A|>0,且A的特征值λ
i
>0(i=1,2,…,n).A
*
的特征值为[*]故A
*
也是正定矩阵,故当n=2k时,f=(一1)
2k
x
T
A
*
x=x
T
A
*
x是正定二次型;当n=2k+1时,f=(一1)
2k+1
x
T
A
*
x=一x
T
A
*
x是负定二次型.
解析
转载请注明原文地址:https://kaotiyun.com/show/wV54777K
0
考研数学一
相关试题推荐
设,则有()
设y1=e-x,y2=2xe-x,y3=3ex是某三阶常系数齐次线性微分方程的解,试确定该微分方程的形式.
设φ(x)是方程y“+y=0的满足条件y(0)=0,y‘(0)=1的解,证明方程y“+y=f(x)满足条件y(0)=y‘(0)=0的解为
设函数y=y(x)满足微分方程y“-3y‘+2y=2ex,且其图形在点(0,1)处的切线与曲线y=x2-x+1在该点的切线重合,求y=y(x)的表达式.
如果函数y1(x)与y2(x)都是以下四个选项给出方程的解,设C1与C2是任意常数,则y=C1y1(x)+C2y2(x)必是()的解
设A为3阶矩阵,Ax=0有非零解,α,β为不成比例的三维列向量,且Aα=2β,Aβ=2α,则|A+3E|=________________.
设f(x)在(-∞,+∞)内连续,以T为周期,证明:∫aa+Tf(x)dx=∫0Tf(x)dx(a为任意实数)。
设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫0xf(x)dt,求证:(Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数;(Ⅱ)∫0xf(t)dt=∫0Tf(x)dx;(Ⅲ)若又有f(x)
判定级数的敛散性:
在天平上重复称量一重为a的物品,假设各次称量结果相互独立且同服从正态分布N(a,0.22),若以n表示n次称量结果的算术平均值,则为使P{|X ̄-a|<0.1}≥0.95,n的最小值应小于自然数_________.
随机试题
腹痛的辨证要点有
长期大量服用阿司匹林引起的出血,可选用何药治疗
肺结核患者使用链霉素治疗过程中,出现全身麻木抽搐,此时选用治疗的药物是
下列各项中,不属于会计档案保管期限的是()。
基尼系数是衡量一个国家贫富差距的标准。若设G为基尼系数,G的数值范围为()。
请认真阅读下文,并按要求作答。材料一:四年级写作课“说说心里话”的教学内容在自己的成长过程中,你是不是有很多心里话想说,却没有机会说出来?这一次,就让我们在自己的习作中一吐为快吧!例如:对老师说,为了我们的成长,您操碎了心;对妈妈说,我已经
国家新闻出版总署等八大部委联合宣布,“网络游戏防沉迷系统”及配套的《网络游戏防沉迷系统实名认证方案》于2007年正式实施,未成年人玩网络游戏超过5小时,经验值和收益将计为0。这一方案的实施,将有效地防止未成年人沉迷于网络游戏。以下哪项说法如果正确,能够最有
文艺复兴三杰为()。
对于不同的对象有不同的属性,但所有对象都共同拥有的属性是______。
以下叙述中正确的是()。
最新回复
(
0
)