首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知k(1,0,2)+k(0,1,-1)T是齐次方程组Ax=0的通解,又Aα+3α=0,其中β=(1,2,3)T,求矩阵A.
已知k(1,0,2)+k(0,1,-1)T是齐次方程组Ax=0的通解,又Aα+3α=0,其中β=(1,2,3)T,求矩阵A.
admin
2017-06-14
27
问题
已知k(1,0,2)+k(0,1,-1)
T
是齐次方程组Ax=0的通解,又Aα+3α=0,其中β=(1,2,3)
T
,求矩阵A.
选项
答案
记α
1
=(1,0,2)
T
,α
2
=(0,1,-1)
T
,由于k
1
α
1
+k
2
α
2
是齐次方程组Ax=0的通解,知α
1
,α
2
是Ax=0的解,也即矩阵A的属于特征值λ=0的线性无关的特征向量,那么 A[α
1
,α
2
,α]=[Aα
1
,Aα
2
,Aα]=E0,0,-3α]. 可知 A=[0,0,-3α][α
1
,α
2
,α]
-1
[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/zpu4777K
0
考研数学一
相关试题推荐
当x→0时,(1-ax2)1/4-1与xsinx是等价无穷小,则z=_________.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.求矩阵B.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关;
设A和B是任意两个概率不为0的不相容事件,则下列结论中肯定正确的是()
(2007年试题,22)设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵.求矩阵B.
(2000年试题,十)设矩阵A的伴随矩阵且ABA-1=BA-1+3E,其中E为4阶单位矩阵,求矩阵B.
(1998年试题,八)设正项数列{an}单调减少,且发散,试问级数是否收敛?并说明理由.
设函数y=y(x)由方程ylny-x+y=0确定,判断曲线y=y(x)在点(1,1)附近的凹凸性.
随机试题
可用于测量肾血浆流量的物质是
女性,45岁。因“头晕、乏力,月经增多1年余”就诊,患者平素喜素食。查体:贫血貌,皮肤无黄染,无皮疹和出血点,全身浅表淋巴结、肝脾未触及。化验:血常规Hb60g/L,WBC4.9×109/L,PLT125×109/L。提问1:对该患者的紧急处理中
A.深海鱼B.玉米油C.花生D.豆油E.动物脑含磷脂较多的食物是
适合于Ⅱ、Ⅲ期内痔的手术方法是
某咨询服务企业(增值税一般纳税人)的下列进项税额,不得从销项税中抵扣的有()。
新型师生关系的特点不包括()。
一位音乐制作人正在一张接一张地录制7张唱片:F、G、H、J、K、L和M,但不必按这一次序录制。安排录制这7张唱片的次序时,必须满足下述条件:(1)F必须排在第二位。(2)J不能排在第七位。(3)G既不能紧挨在H的前面,也不能紧
当臭氧达到一定浓度之后,会对人体造成严重的伤害。当人们吸入臭氧之后,臭氧就会因为其强氧化作用而使呼吸道产生烧灼感,造成呼吸系统充血或发炎,儿童、老人和患有呼吸道疾病的人受到臭氧的伤害尤为严重。据专家统计,在欧洲,臭氧污染导致欧洲人的死亡率增加了2%到12%
EverymorningJohngoestoworkbytrains.He【M1】______alwaysbuysanewspaper.Ithelpstomakethetime【M2】______passmoreq
A、Thesurfaceoftheoceanisexpanding.B、Volcanicactivitiesareincreasing.C、ThesurfaceofEarthcontainstonsofcosmicdu
最新回复
(
0
)